Epigenetic profiling of menstrual blood for precision cancer detection and prevention
The EpiPrecise project aims to refine a cellular deconvolution algorithm for developing novel epigenetic tests to improve cancer detection and prevention strategies, particularly for women's cancers.
Projectdetails
Introduction
Cancer has overtaken cardiovascular disease as the number one cause of mortality in high-income countries, and cancer incidence is increasing across the globe. Morbidity and mortality from women’s cancers, particularly breast, ovarian, and endometrial cancers, follow or exceed these general trends in cancer incidence.
Multifactorial Approach
Tackling this growing cancer burden requires a multifactorial approach, including:
- Understanding the fundamental drivers of cancer development.
- Improving methods for detecting earlier those forms of cancer with the worst prognosis.
- Predicting a person’s risk of developing cancer.
- Identifying appropriate targets for preventing cancer.
Indeed, one of the biggest obstacles in identifying tailored cancer prevention strategies is a lack of surrogate readout markers reflecting and integrating an individual’s response to the cancer-initiating and cancer-promoting factors that they are exposed to during their lifetime.
Research Focus
Our research delivers novel epigenetic tests relating to each of these key areas, with an emphasis on women’s cancers and those who are at an increased risk for cancer due to their underlying genetics, such as women with BRCA1 or BRCA2 mutations and women with Lynch Syndrome.
Cellular Deconvolution Algorithm
Central to the discovery and development of the epigenetic tests is a cellular deconvolution algorithm that is used to calculate the proportions of cell types within complex, mixed samples such as cervical swabs.
Expansion of the Algorithm
In order to broaden the clinical utility of the tests and explore new applications, refinement and expansion of this cellular deconvolution algorithm is now required. The expansion will include cell types in menstrual blood, which is an important and understudied clinical sample type.
EpiPrecise Project
The EpiPrecise project will deliver this refined and expanded algorithm and apply it to a test case in an area of high unmet clinical need. The refined algorithm will then be applied across the research portfolio and shared.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITAET INNSBRUCKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Detecting epigenetic biomarkers in the blood for non-invasive precision oncologyDevelop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution. | ERC Starting... | € 1.500.000 | 2022 | Details |
Comprehensive Platform for the Functional Characterization of Cancer Epigenetics and DiagnosisEpiCancer aims to develop single-cell epigenetic analysis tools to understand cancer heterogeneity and improve diagnostics through blood tests, enhancing early detection and monitoring of tumors. | ERC Starting... | € 1.500.000 | 2024 | Details |
Towards early cancer detection and tumor classification using epigenomic biomarkers in bloodEpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays. | ERC Starting... | € 1.499.999 | 2024 | Details |
Building consensus for a new approach to breast cancer prevention in women with a BRCA1 mutationThis project aims to establish consensus for a clinical trial using progesterone receptor antagonists to prevent breast and ovarian cancer in women with BRCA1 mutations. | ERC Proof of... | € 150.000 | 2023 | Details |
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patientsEpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure. | ERC Consolid... | € 1.998.625 | 2022 | Details |
Detecting epigenetic biomarkers in the blood for non-invasive precision oncology
Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.
Comprehensive Platform for the Functional Characterization of Cancer Epigenetics and Diagnosis
EpiCancer aims to develop single-cell epigenetic analysis tools to understand cancer heterogeneity and improve diagnostics through blood tests, enhancing early detection and monitoring of tumors.
Towards early cancer detection and tumor classification using epigenomic biomarkers in blood
EpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays.
Building consensus for a new approach to breast cancer prevention in women with a BRCA1 mutation
This project aims to establish consensus for a clinical trial using progesterone receptor antagonists to prevent breast and ovarian cancer in women with BRCA1 mutations.
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patients
EpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Haalbaarheidsonderzoek naar epigenetische biomarkers voor non-invasieve kankertestenEpify onderzoekt de haalbaarheid van non-invasieve epigenetische biomarkers voor vroege kankerdetectie, met focus op darmkanker. | Mkb-innovati... | € 5.349 | 2020 | Details |
Uitbreiding methylatie platformsMLA Dx ontwikkelt een prognostische methode voor vroeg stadium melanomen via LY75 methylatie, ter verbetering van diagnose en behandeling. | Mkb-innovati... | € 20.000 | 2021 | Details |
DETACT - Detection of Enzymes and muTAtions for Cancer TreatmentCytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen. | Mkb-innovati... | € 215.845 | 2019 | Details |
Early detection of treatment response in breast cancerThe project aims to enhance breast cancer treatment through Hyperpolarized Magnetic Resonance imaging for early detection of non-responders, improving outcomes and reducing side effects. | EIC Transition | € 2.499.229 | 2024 | Details |
Haalbaarheidsonderzoek naar epigenetische biomarkers voor non-invasieve kankertesten
Epify onderzoekt de haalbaarheid van non-invasieve epigenetische biomarkers voor vroege kankerdetectie, met focus op darmkanker.
Uitbreiding methylatie platforms
MLA Dx ontwikkelt een prognostische methode voor vroeg stadium melanomen via LY75 methylatie, ter verbetering van diagnose en behandeling.
DETACT - Detection of Enzymes and muTAtions for Cancer Treatment
Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.
Early detection of treatment response in breast cancer
The project aims to enhance breast cancer treatment through Hyperpolarized Magnetic Resonance imaging for early detection of non-responders, improving outcomes and reducing side effects.