EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for Characterizing Global Food Security on Regional Scales

This project aims to enhance global food security assessment using AI and satellite data to develop an integrated service that provides detailed food security indicators and maps.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Characterizing the state of global food security is essential in devising and evaluating policies and programs for effective decision making. The concept of food security is multidimensional and dynamic and is often compounded by the challenge of obtaining relevant data.

Challenges in Food Security Measurement

Moreover, finding appropriate indicators that specifically encompass the four dimensions of food security (including physical availability of food, economic and physical access to food, food utilization, and sustainability) as specified by UN FAO remains a challenging task. There exists a variety of different measures for assessing the food security situation, but they merely focus on nutrition and physical aspects and thus provide incomplete assessments related to the problem.

Project Objectives

In this PoC project, I aim to extend the unique AI algorithms and the big EO data management features developed in the ERC StG “So2Sat” to characterize the state of global food security on regional scales using multimodal data derived from satellite imagery and auxiliary open data, and offer our software as a commercial, integrated service.

Business Case Development

Within the PoC, a comprehensive business case that will assist us in designing an exploitation strategy will be developed. Achieving these objectives will augment the capability of our existing AI solution for land cover/land use mapping to infer the crucial aspects of food security and sustainability.

Value Proposition

Our value proposition in EO4FoodSecurity is a set of professional solutions to extract relevant indicators for characterizing food security by retrieving them from big EO data and other open sources using AI.

Example Applications

  1. Generating land use maps.
  2. Using land use maps along with other information extraction modules of So2Sat (such as population density, road, and building footprints).
  3. Integrating other open data (e.g., meteorological, nutrition) to generate food security maps at unprecedented finer spatial and temporal scales.

We aim to support these solutions in an easy-to-use, interactive big EO data analysis platform.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-7-2023
Einddatum30-9-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET MUENCHENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Who Has Eaten the Planet? The paths of food systems beyond the safe and just operating space (1850-2020)

WHEP aims to assess the environmental impacts of food production since 1850, integrating data on trade, inequality, and planetary boundaries to inform sustainable policies.

€ 1.494.166
ERC Proof of...

A Sonar Sensing System for Crop Yield Estimation

Developing a patented sonar sensing system for accurate large-scale agricultural yield estimation to enhance nutritional security and support farmers globally.

€ 150.000
ERC Starting...

Beyond the breadline: Charitable food provision and survival strategies of the urban poor in a comparative perspective

This project aims to develop a comparative framework for Charitable Food Provision across Italy, Japan, and the Netherlands, using mixed methods to analyze historical and current dynamics in urban food support systems.

€ 1.499.144
ERC Proof of...

A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040

GeoAI_LULC_Seg aims to develop an advanced AI-based method for accurate historical land use mapping in Bulgaria and Turkey, enhancing understanding of rural depopulation and land abandonment trends.

€ 150.000
ERC Proof of...

Early warning systeM for soil dEgRadation: a statistical physics Approach to cLimate change aDaptation

The EMERALD Proof of Concept aims to develop a scalable soil fertility monitoring method using statistical physics to combat soil degradation and enhance climate change adaptation for agriculture and land use.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Accelerator

Precise, Global Temperature Data for a Growing Planet

ConstellR aims to enhance global food production by 4% and reduce agricultural water waste through high-precision temperature data from a scalable microsatellite constellation.

€ 2.454.396
Mkb-innovati...

Remote Sensing for carbon stocks measurement in food supply chains

Het project ontwikkelt een Remote Sensing service om de koolstofopslag in koffie- en cacaoplantages te meten, ter ondersteuning van merken bij het verminderen van hun ecologische voetafdruk.

€ 20.000
Mkb-innovati...

Monitoring en voorspelling van aardappeloogst en kwaliteit door middel van innovatieve aardobservatie-data

Dit project ontwikkelt innovatieve software die satellietdata en meteorologische informatie integreert voor optimale en duurzame productieplanning in de aardappelverwerkende industrie.

€ 162.930
Mkb-innovati...

Haalbaarheid bodemzonering

Dit project onderzoekt de haalbaarheid en business case van het gebruik van satellietbeelden voor het verbeteren van bodemkaarten in de landbouw.

€ 20.000
Mkb-innovati...

Veilig Vlees Verwerken onder de Aquamar UV Deken

Geo4A ontwikkelt een innovatief rasherkenningsmodel met satellietbeelden om aardappelrassen automatisch te classificeren, wat kostenefficiënte opsporing van illegaliteit mogelijk maakt.

€ 20.000