A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040

GeoAI_LULC_Seg aims to develop an advanced AI-based method for accurate historical land use mapping in Bulgaria and Turkey, enhancing understanding of rural depopulation and land abandonment trends.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) maps combined with dynamics of population geography, especially regarding urban sprawl.

Historical Data Limitations

Modern LULC and spatially disaggregated population datasets go back to the 1980s and 1970s. Although we have earlier population data, these are not geomatched to locations in LULC maps. Earlier LULC maps are either not very reliable (extracted from historical maps) or limited in their geographical coverage (based on selected aerial photos or satellite imagery).

These are severe limitations to developing longer and deeper perspectives and understanding the root causes of these detrimental changes in population geography and land use practices in large territories.

Project Overview

GeoAI_LULC_Seg will develop an advanced, modular, and customizable geospatial artificial intelligence-based land use land cover segmentation process to accurately map LULC conditions for around 30,000 km² in a border region between Bulgaria and Turkey, including the cities Edirne, Istanbul, and Plovdiv. This will be achieved by pairing historical aerial photographs and early reconnaissance satellite images (dating back to the 1950s and the 1970s respectively) with geotagged historical population census data.

Methodological Innovations

Our methodological novelties are not limited to GeoAI-based object segmentation and super-resolution applications for panchromatic imagery for our research area.

  1. Our project will create transferable knowledge and scalable methods for global applications for the 1970s, thanks to worldwide coverage of high-spatial-resolution satellite imagery we will process.
  2. Furthermore, we will build long-term LULC maps series commensurable with current satellite data (1950-2020), allowing us to improve predictions for future population geography and LULC changes.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-10-2022
Einddatum31-3-2024
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • KOC UNIVERSITYpenvoerder

Land(en)

Türkiye

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Creating water-smart landscapes

The project aims to develop a machine learning framework to identify optimal land management scenarios for nature-based solutions that reduce agricultural nutrient runoff in priority areas.

€ 1.909.500
ERC Consolid...

GREENER URBAN TRAVEL ENVIRONMENTS FOR EVERYONE: From measured wellbeing impacts to Big Data analytics

The project aims to assess the quality and equity of green urban travel environments using advanced technologies to enhance wellbeing and inform future greenery integration in cities.

€ 1.981.735
ERC Proof of...

EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for Characterizing Global Food Security on Regional Scales

This project aims to enhance global food security assessment using AI and satellite data to develop an integrated service that provides detailed food security indicators and maps.

€ 150.000
ERC Starting...

A Global Evaluation of Public Policies to Mitigate and Reverse Land Degradation

This project aims to assess global land degradation policies through comprehensive data analysis and econometric methods to enhance their effectiveness and inform sustainable land management strategies.

€ 1.452.644
ERC Synergy ...

Molecular Ecology of Medieval European Landscapes

MEMELAND aims to create Europe's first species-level ecological history from the Roman era to today, using ancient DNA and biomarkers to inform sustainable land management and conservation efforts.

€ 13.537.645

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

VerTech

Dit project onderzoekt de haalbaarheid van een innovatieve AI-methode voor het automatisch karteren van geografische kaarten, met als doel nauwkeurige en actuele informatievoorziening voor overheidsbeheer.

€ 20.000
LIFE Standar...

Use of remote sensing for management of blue-green infrastructure in the process of city adaptation to climate change

The LIFECOOLCITY project aims to enhance the adaptive capacity of 10,000 EU cities by implementing innovative IT systems for blue-green infrastructure management and Nature-based Solutions.

€ 2.935.738
Mkb-innovati...

Haalbaarheidsstudie AGRISEEK

Aerial Precision B.V. onderzoekt de haalbaarheid van een systeem voor real-time verwerking van LiDAR-gegevens voor diverse toepassingen.

€ 20.000
Mkb-innovati...

Ontwikkeling AI gebaseerd locatie dataplatform

Ontwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel.

€ 199.000
Mkb-innovati...

ReTreevAIble

Het project ontwikkelt ReTreevAIble, een datagestuurde oplossing voor beleidsmakers om urban forestation te verbeteren met AI-ondersteunde analyses van boomgezondheid en biodiversiteit.

€ 199.850