A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040
GeoAI_LULC_Seg aims to develop an advanced AI-based method for accurate historical land use mapping in Bulgaria and Turkey, enhancing understanding of rural depopulation and land abandonment trends.
Projectdetails
Introduction
Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) maps combined with dynamics of population geography, especially regarding urban sprawl.
Historical Data Limitations
Modern LULC and spatially disaggregated population datasets go back to the 1980s and 1970s. Although we have earlier population data, these are not geomatched to locations in LULC maps. Earlier LULC maps are either not very reliable (extracted from historical maps) or limited in their geographical coverage (based on selected aerial photos or satellite imagery).
These are severe limitations to developing longer and deeper perspectives and understanding the root causes of these detrimental changes in population geography and land use practices in large territories.
Project Overview
GeoAI_LULC_Seg will develop an advanced, modular, and customizable geospatial artificial intelligence-based land use land cover segmentation process to accurately map LULC conditions for around 30,000 km² in a border region between Bulgaria and Turkey, including the cities Edirne, Istanbul, and Plovdiv. This will be achieved by pairing historical aerial photographs and early reconnaissance satellite images (dating back to the 1950s and the 1970s respectively) with geotagged historical population census data.
Methodological Innovations
Our methodological novelties are not limited to GeoAI-based object segmentation and super-resolution applications for panchromatic imagery for our research area.
- Our project will create transferable knowledge and scalable methods for global applications for the 1970s, thanks to worldwide coverage of high-spatial-resolution satellite imagery we will process.
- Furthermore, we will build long-term LULC maps series commensurable with current satellite data (1950-2020), allowing us to improve predictions for future population geography and LULC changes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- KOC UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Creating water-smart landscapesThe project aims to develop a machine learning framework to identify optimal land management scenarios for nature-based solutions that reduce agricultural nutrient runoff in priority areas. | ERC Consolid... | € 1.909.500 | 2024 | Details |
GREENER URBAN TRAVEL ENVIRONMENTS FOR EVERYONE: From measured wellbeing impacts to Big Data analyticsThe project aims to assess the quality and equity of green urban travel environments using advanced technologies to enhance wellbeing and inform future greenery integration in cities. | ERC Consolid... | € 1.981.735 | 2023 | Details |
EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for Characterizing Global Food Security on Regional ScalesThis project aims to enhance global food security assessment using AI and satellite data to develop an integrated service that provides detailed food security indicators and maps. | ERC Proof of... | € 150.000 | 2023 | Details |
A Global Evaluation of Public Policies to Mitigate and Reverse Land DegradationThis project aims to assess global land degradation policies through comprehensive data analysis and econometric methods to enhance their effectiveness and inform sustainable land management strategies. | ERC Starting... | € 1.452.644 | 2023 | Details |
Molecular Ecology of Medieval European LandscapesMEMELAND aims to create Europe's first species-level ecological history from the Roman era to today, using ancient DNA and biomarkers to inform sustainable land management and conservation efforts. | ERC Synergy ... | € 13.537.645 | 2025 | Details |
Creating water-smart landscapes
The project aims to develop a machine learning framework to identify optimal land management scenarios for nature-based solutions that reduce agricultural nutrient runoff in priority areas.
GREENER URBAN TRAVEL ENVIRONMENTS FOR EVERYONE: From measured wellbeing impacts to Big Data analytics
The project aims to assess the quality and equity of green urban travel environments using advanced technologies to enhance wellbeing and inform future greenery integration in cities.
EO4FoodSecurity: Using Earth Observation Enabled Land Cover Classification for Characterizing Global Food Security on Regional Scales
This project aims to enhance global food security assessment using AI and satellite data to develop an integrated service that provides detailed food security indicators and maps.
A Global Evaluation of Public Policies to Mitigate and Reverse Land Degradation
This project aims to assess global land degradation policies through comprehensive data analysis and econometric methods to enhance their effectiveness and inform sustainable land management strategies.
Molecular Ecology of Medieval European Landscapes
MEMELAND aims to create Europe's first species-level ecological history from the Roman era to today, using ancient DNA and biomarkers to inform sustainable land management and conservation efforts.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
VerTechDit project onderzoekt de haalbaarheid van een innovatieve AI-methode voor het automatisch karteren van geografische kaarten, met als doel nauwkeurige en actuele informatievoorziening voor overheidsbeheer. | Mkb-innovati... | € 20.000 | 2022 | Details |
Use of remote sensing for management of blue-green infrastructure in the process of city adaptation to climate changeThe LIFECOOLCITY project aims to enhance the adaptive capacity of 10,000 EU cities by implementing innovative IT systems for blue-green infrastructure management and Nature-based Solutions. | LIFE Standar... | € 2.935.738 | 2023 | Details |
Haalbaarheidsstudie AGRISEEKAerial Precision B.V. onderzoekt de haalbaarheid van een systeem voor real-time verwerking van LiDAR-gegevens voor diverse toepassingen. | Mkb-innovati... | € 20.000 | 2023 | Details |
Ontwikkeling AI gebaseerd locatie dataplatformOntwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel. | Mkb-innovati... | € 199.000 | 2022 | Details |
ReTreevAIbleHet project ontwikkelt ReTreevAIble, een datagestuurde oplossing voor beleidsmakers om urban forestation te verbeteren met AI-ondersteunde analyses van boomgezondheid en biodiversiteit. | Mkb-innovati... | € 199.850 | 2022 | Details |
VerTech
Dit project onderzoekt de haalbaarheid van een innovatieve AI-methode voor het automatisch karteren van geografische kaarten, met als doel nauwkeurige en actuele informatievoorziening voor overheidsbeheer.
Use of remote sensing for management of blue-green infrastructure in the process of city adaptation to climate change
The LIFECOOLCITY project aims to enhance the adaptive capacity of 10,000 EU cities by implementing innovative IT systems for blue-green infrastructure management and Nature-based Solutions.
Haalbaarheidsstudie AGRISEEK
Aerial Precision B.V. onderzoekt de haalbaarheid van een systeem voor real-time verwerking van LiDAR-gegevens voor diverse toepassingen.
Ontwikkeling AI gebaseerd locatie dataplatform
Ontwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel.
ReTreevAIble
Het project ontwikkelt ReTreevAIble, een datagestuurde oplossing voor beleidsmakers om urban forestation te verbeteren met AI-ondersteunde analyses van boomgezondheid en biodiversiteit.