Fast and simple biomarker detection by computational microscopy
We developed a fast, sensitive biomarker detection method for early diagnosis and monitoring of cancer treatments, aiming to improve patient outcomes through preventative diagnostics.
Projectdetails
Introduction
Detection of low concentrations of biomarkers, such as low-abundant proteins in physiological samples, is crucial for early-stage diagnosis and disease monitoring. However, existing detection methods are often laborious, costly, and time-consuming, rendering them unsuitable for such applications.
Method Development
Based on advances in computational PSF engineering microscopy made during our ERC Starting Grant, and in combination with microfluidic design, we developed a simple and fast biomarker detection method. This method allows accurate and sensitive results with minimal hands-on sample processing, which we have validated for potential applicability in diagnostics, and specifically, for continuous monitoring.
Clinical Application
As a target clinical application towards which we can optimize our engineering efforts, we demonstrate the potential for preventative diagnostics via a collaboration with Rambam Medical Center (Israel), focusing on monitoring cell-based cancer treatments.
Challenges in Cell-Based Therapies
While cell-based therapies can be highly effective, they have introduced new types of cytokine-related adverse effects that can be debilitating and even life-threatening. Due to the current lack of appropriate diagnostics for preventative treatment, these adverse effects are mitigated only when symptoms arise, which might be too late.
Hypothesis and Goals
We hypothesize that earlier detection using our method will enable preventive treatment and reduction in frequency and severity of these adverse events, transforming patient outcomes.
Multiplexed Cytokine Detection Scheme
We will develop a multiplexed cytokine detection scheme that reaches clinically significant sensitivity and assess the effectiveness of this approach by monitoring CAR-T patients.
Project Duration and Future Steps
In the duration of the project, we will conduct market research and develop a regulation strategy with the aid of industrial and medical collaborations, advancing our diagnostic method toward commercialization.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-12-2024 |
Einddatum | 31-5-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Fingerprinting Single Protein Molecules for Biomarker Assisted Precision MedicineSM-ProTrack aims to develop a low-cost, highly sensitive single-molecule sensing technology for detecting AMD biomarkers in small clinical samples, enhancing diagnostic capabilities and commercialization potential. | ERC Proof of... | € 150.000 | 2024 | Details |
Multiplexed microRNA detection platform for early diagnosis and patient managementThe MiRACLE project aims to develop a cost-effective diagnostic platform for early disease detection by utilizing a novel optical sensing method to simultaneously detect individual micro-RNA molecules in bodily fluids. | ERC Proof of... | € 150.000 | 2024 | Details |
Detecting epigenetic biomarkers in the blood for non-invasive precision oncologyDevelop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution. | ERC Starting... | € 1.500.000 | 2022 | Details |
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer MonitoringDevelop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies. | ERC Proof of... | € 150.000 | 2023 | Details |
CRISPR Point-of-Care DiagnosticsDeveloping a streamlined, one-step CRISPR-Cas diagnostic tool for rapid and accurate detection of COPD pathogens, enhancing point-of-care diagnostics and commercialization potential. | ERC Proof of... | € 150.000 | 2022 | Details |
Fingerprinting Single Protein Molecules for Biomarker Assisted Precision Medicine
SM-ProTrack aims to develop a low-cost, highly sensitive single-molecule sensing technology for detecting AMD biomarkers in small clinical samples, enhancing diagnostic capabilities and commercialization potential.
Multiplexed microRNA detection platform for early diagnosis and patient management
The MiRACLE project aims to develop a cost-effective diagnostic platform for early disease detection by utilizing a novel optical sensing method to simultaneously detect individual micro-RNA molecules in bodily fluids.
Detecting epigenetic biomarkers in the blood for non-invasive precision oncology
Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.
Deep Label-Free Cell Imaging of Liquid Biopsies for Cancer Monitoring
Develop and commercialize a label-free interferometric phase microscopy device with AI for cost-effective cancer diagnosis and monitoring via liquid biopsies.
CRISPR Point-of-Care Diagnostics
Developing a streamlined, one-step CRISPR-Cas diagnostic tool for rapid and accurate detection of COPD pathogens, enhancing point-of-care diagnostics and commercialization potential.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samplesThe NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs. | EIC Transition | € 2.499.999 | 2025 | Details |
DETACT - Detection of Enzymes and muTAtions for Cancer TreatmentCytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen. | Mkb-innovati... | € 215.845 | 2019 | Details |
Chemometric histopathology via coherent Raman imaging for precision medicineThe CHARM project aims to revolutionize cancer diagnosis with a novel AI-integrated, label-free tissue analysis system, achieving high accuracy in tumor identification and classification. | EIC Transition | € 2.441.979 | 2022 | Details |
Fully automated cell-free DNA extraction and quantification - liquid biopsies safely from Patient to LabBiopSense aims to develop and validate a fully automated disposable cartridge for cfDNA extraction from blood, enhancing reliability and transport ease for cancer diagnostics and prenatal screening. | EIC Transition | € 2.500.000 | 2022 | Details |
Pre-clinical validation and demonstration of PeptiCHIP: an immunopurification microfluidic device and software for (neo)antigen identification and prioritizationValo Therapeutics is developing PeptiCHIP, a microfluidic device and algorithm to efficiently identify neoantigens for personalized cancer immunotherapy, enhancing patient response rates. | EIC Transition | € 2.226.280 | 2023 | Details |
Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samples
The NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs.
DETACT - Detection of Enzymes and muTAtions for Cancer Treatment
Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.
Chemometric histopathology via coherent Raman imaging for precision medicine
The CHARM project aims to revolutionize cancer diagnosis with a novel AI-integrated, label-free tissue analysis system, achieving high accuracy in tumor identification and classification.
Fully automated cell-free DNA extraction and quantification - liquid biopsies safely from Patient to Lab
BiopSense aims to develop and validate a fully automated disposable cartridge for cfDNA extraction from blood, enhancing reliability and transport ease for cancer diagnostics and prenatal screening.
Pre-clinical validation and demonstration of PeptiCHIP: an immunopurification microfluidic device and software for (neo)antigen identification and prioritization
Valo Therapeutics is developing PeptiCHIP, a microfluidic device and algorithm to efficiently identify neoantigens for personalized cancer immunotherapy, enhancing patient response rates.