Unlocking the complex genomes of European potatoes for modern breeding
BYTE2BITE aims to enhance potato breeding by creating a near-complete pan-genome and developing tools for efficient genotyping to produce low mutational load cultivars for global food security.
Projectdetails
Introduction
Potato is one of the three most important food crops in the world. Around 1.3 billion people rely on potato as a staple food every day. But despite this exceptional socio-economic importance, the improvement of potato during the past 150 years has been limited. The main reason for this deficit is the highly heterozygous, autotetraploid genome of potato. This complicates several important aspects of breeding, including the fixation of beneficial alleles and the implementation of modern, genomics-assisted breeding techniques.
Challenges in Breeding
Recently, it has been suggested to convert tetraploid potato into a diploid crop, thereby overcoming all the difficulties associated with tetraploid potato breeding. However, the creation of diploid potatoes is hampered by the large number of deleterious recessive mutations that have accumulated in the tetraploid genome and are exposed in the diploid potatoes.
Project Overview
In BYTE2BITE, we will address the fundamental issues that hold back the success of potato breeding. We will generate the first-of-its-kind, near-to-complete pan-genome of potato and use this resource to develop unprecedented genome-graph tools for efficient genotyping and haplotype-resolved genome analysis.
Goals
We will then use this new computational toolbox to establish a genomics-assisted pre-breeding programme in which we will generate novel potato cultivars with low mutational load. This new resource will open the doors to efficient breeding, unleashing the genetic potential of potato and thereby helping to secure the way we feed the world for the decades to come.
Specifically, in BYTE2BITE we want to achieve the following goals:
- A near-to-complete pan-genome describing almost the entire haplotype diversity of potato.
- A genome graph tool for cost-efficient genotyping and haplotype-resolved genome analyses.
- A genomics-assisted pre-breeding programme for potatoes with low mutational load.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.826 |
Totale projectbegroting | € 1.998.826 |
Tijdlijn
Startdatum | 1-2-2025 |
Einddatum | 31-1-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Next-generation multi-targeted CRISPR genetic toolbox uncovers hidden breeding traitsMulti-Crop technology utilizes genome-scale multi-targeted CRISPR libraries to uncover hidden genetic traits in crops, revolutionizing plant breeding for enhanced resilience and productivity. | ERC Proof of... | € 150.000 | 2023 | Details |
AdaptiveTarget: Accessing haplotype variation at complex loci with optimized targeting and adaptive samplingDeveloping AdaptiveTarget, a bioinformatic method for efficient long-read sequencing of complex genomic regions, to enhance crop disease resistance and improve precision breeding. | ERC Proof of... | € 150.000 | 2024 | Details |
In planta jet injection: Efficient genetic engineering of resilient cropsThe project aims to develop affordable, high-throughput devices for efficient genome editing in crops to enhance yield and climate resilience, addressing global food security challenges by 2100. | ERC Proof of... | € 150.000 | 2023 | Details |
Asexual reproduction through clonal seeds: mechanisms to applicationThis project aims to develop synthetic apomixis in hybrid lettuce and tomato by deciphering a parthenogenesis gene, enabling stable inheritance of hybrid traits for sustainable agriculture. | ERC Starting... | € 1.500.000 | 2023 | Details |
3Dwheat, A 3 Dimensional functional genomics approach to identify hidden targets controlling heat stress and priming in wheatThis project aims to enhance heat stress resistance in wheat by developing a tri-dimensional functional genomics approach to understand epigenetic mechanisms and create innovative breeding tools. | ERC Consolid... | € 1.999.995 | 2022 | Details |
Next-generation multi-targeted CRISPR genetic toolbox uncovers hidden breeding traits
Multi-Crop technology utilizes genome-scale multi-targeted CRISPR libraries to uncover hidden genetic traits in crops, revolutionizing plant breeding for enhanced resilience and productivity.
AdaptiveTarget: Accessing haplotype variation at complex loci with optimized targeting and adaptive sampling
Developing AdaptiveTarget, a bioinformatic method for efficient long-read sequencing of complex genomic regions, to enhance crop disease resistance and improve precision breeding.
In planta jet injection: Efficient genetic engineering of resilient crops
The project aims to develop affordable, high-throughput devices for efficient genome editing in crops to enhance yield and climate resilience, addressing global food security challenges by 2100.
Asexual reproduction through clonal seeds: mechanisms to application
This project aims to develop synthetic apomixis in hybrid lettuce and tomato by deciphering a parthenogenesis gene, enabling stable inheritance of hybrid traits for sustainable agriculture.
3Dwheat, A 3 Dimensional functional genomics approach to identify hidden targets controlling heat stress and priming in wheat
This project aims to enhance heat stress resistance in wheat by developing a tri-dimensional functional genomics approach to understand epigenetic mechanisms and create innovative breeding tools.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3P-Tec - Three-parent breeding technology for plants of the futureThe project aims to develop a revolutionary three-parent breeding technology (3P-Tec) to create climate-resilient crops, enhancing yields and accelerating the commercialization of improved seed varieties. | EIC Transition | € 2.498.828 | 2022 | Details |
Eiwitgehalte cultuuraardappelHet project onderzoekt de haalbaarheid van het verdubbelen van het eiwitpercentage in aardappelrassen naar minimaal 4% om de gezondheid te verbeteren en de opbrengst per hectare te verhogen. | Mkb-innovati... | € 13.600 | 2023 | Details |
Monitoring en voorspelling van aardappeloogst en kwaliteit door middel van innovatieve aardobservatie-dataDit project ontwikkelt innovatieve software die satellietdata en meteorologische informatie integreert voor optimale en duurzame productieplanning in de aardappelverwerkende industrie. | Mkb-innovati... | € 162.930 | 2019 | Details |
Soilmate, robot om aardappelziekten te detecterenHet project ontwikkelt een autonome robot met AI om vroegtijdig ziekten in aardappelplanten te detecteren, wat de oogst efficiëntie verhoogt en het gebruik van pesticiden vermindert. | Mkb-innovati... | € 185.675 | 2019 | Details |
Aardappelrasherkenning met satelliettechnologieGeo4A ontwikkelt een innovatief rasherkenningsmodel met satellietbeelden om illegale handel in pootaardappelen te bestrijden en veredelingsbedrijven waardevolle teeltinformatie te bieden. | Mkb-innovati... | € 20.000 | 2020 | Details |
3P-Tec - Three-parent breeding technology for plants of the future
The project aims to develop a revolutionary three-parent breeding technology (3P-Tec) to create climate-resilient crops, enhancing yields and accelerating the commercialization of improved seed varieties.
Eiwitgehalte cultuuraardappel
Het project onderzoekt de haalbaarheid van het verdubbelen van het eiwitpercentage in aardappelrassen naar minimaal 4% om de gezondheid te verbeteren en de opbrengst per hectare te verhogen.
Monitoring en voorspelling van aardappeloogst en kwaliteit door middel van innovatieve aardobservatie-data
Dit project ontwikkelt innovatieve software die satellietdata en meteorologische informatie integreert voor optimale en duurzame productieplanning in de aardappelverwerkende industrie.
Soilmate, robot om aardappelziekten te detecteren
Het project ontwikkelt een autonome robot met AI om vroegtijdig ziekten in aardappelplanten te detecteren, wat de oogst efficiëntie verhoogt en het gebruik van pesticiden vermindert.
Aardappelrasherkenning met satelliettechnologie
Geo4A ontwikkelt een innovatief rasherkenningsmodel met satellietbeelden om illegale handel in pootaardappelen te bestrijden en veredelingsbedrijven waardevolle teeltinformatie te bieden.