A 3D-printable biomimetic bone regeneration material

PRIOBONE aims to validate a novel 3D-printable, bone-mimetic material for critical-size bone defects, offering a customizable, cost-effective solution to improve healing outcomes.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

Critical-size bone defects do not heal spontaneously over the patient’s lifetime and cause substantial individual, societal, and economic burden. Current treatment options are hampered by associated complications, poor functional or aesthetic outcomes, a limited availability of tissue for bone grafts, and high financial costs.

Global Context

Worldwide, more than 4 million surgeries per year require bone grafts or substitute materials. Consequently, there is a significant clinical and economic need for novel treatments for critical-size bone defects.

Project Overview

In PRIOBONE, we propose the validation and steps towards exploitation of our newly developed, bone-mimetic 3D-printable material for bone repair. Our PRIOBONE material has the potential to outperform current treatments and alternative solutions on the market due to its:

  • Biomimetic composition
  • Excellent cytocompatibility
  • Osteoinductive capacity
  • Ideal mechanical properties
  • 3D printability into any desired shape

This allows us to create implants optimized for clinical and individual patient needs.

Innovative Features

This includes, for example, the possibility to print the material into foldable and deployable 3D designs that allow a minimally invasive insertion of the material into defect sites, where it can re-expand.

Approach to Clinical Application

The use of well-established components and our “materials-only” approach will enable a faster track to clinical application and regulatory approval in comparison to approaches containing biologicals such as cells or previously unknown components.

Validation and Commercialization

In PRIOBONE, we will validate our material for bone regeneration, undertake a comprehensive market analysis, explore target leads and transfer pathways, and elaborate our IP strategy towards commercialization.

Expected Outcomes

Following successful validation, we expect that PRIOBONE will provide a cost-efficient, individualizable alternative to current treatments with the potential to significantly lower the economic, individual, and social burden of critical-size bone defects.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2024
Einddatum30-6-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVERpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Bioactive reinforcing bioink for hybrid bioprinting of implantable bone

The project aims to develop 'BioForceInk,' a bioactive bioink for hybrid 3D bioprinting of vascularized bone implants, enhancing mechanical strength and biological functionality for clinical applications.

€ 150.000
ERC Proof of...

Self-feeding implants to improve and accelerate tissue healing using nutritional nanoparticles

The NutriBone project aims to develop a patented self-feeding bone implant that enhances long-term viability and reduces failure rates for large bone defects through glycogen-based glucose release.

€ 150.000
ERC Proof of...

BioBone: Bioactive Hydrogel-based Implants to Induce Bone Regeneration

The project aims to enhance bone regeneration after tumor resection by developing 3D-printed porous titanium implants integrated with bioactive materials, improving patient outcomes and reducing complications.

€ 150.000
ERC Consolid...

Regenerative Stenting for Osteoporotic Vertebral Fracture Repair

RESTORE aims to revolutionize osteoporotic vertebral fracture treatment by using 3D-printed biodegradable stents and thermoresponsive hydrogels for personalized bone regeneration and repair.

€ 2.039.473
ERC Proof of...

A novel support material for 3D bioprinting and post-printing tissue growth: Print and Grow

The "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Accelerator

The Holy Grail in Bone regeneration

GreenBone aims to revolutionize bone grafts with a synthetic Rattan wood-based implant that mimics natural bone, enhancing regeneration and targeting the spinal market by 2025.

€ 2.458.128
Mkb-innovati...

Ceramic paste for 3D-printable bone implants

Z3DLABS en Delft Solids Solutions ontwikkelen een 3D printbare keramische pasta voor patiëntspecifieke, bio-compatibele botimplantaten met een langere levensduur en lagere behandelkosten.

€ 195.510
Mkb-innovati...

AIM+; De ontwikkeling van een poreus, titanium implantaat voor wervelfracturen

Het project ontwikkelt een innovatief, 3D-geprint titanium implantaat voor wervelfracturen dat botgroei bevordert en complicaties van traditionele behandelingen vermindert.

€ 162.175
Mkb-innovati...

Ontwikkelen nieuw middel voor de lokale genezing van botbreuken

Dit project ontwikkelt een nieuwe formulering van microspheres met groeifactoren voor Demineralized Bone Material (DBM) om de effectiviteit bij moeilijk genezende botbreuken te verbeteren.

€ 194.500
EIC Pathfinder

Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration

BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.

€ 4.039.541