Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic Management

X-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy.

Subsidie
€ 1.999.608
2024

Projectdetails

Introduction

X-STREAM will sprout a new era of sustainable power sources based in photovoltaic (PV) systems which are not bounded by fundamental limits that hamper the efficiency of conventional solar cells, and endowed with energy storage via a synergetic coupling with electrochemistry (EC).

Objectives

This will be achieved via an unprecedented energy-package integrating two disruptive advances:

  1. Light Management
    Light management via quantum structuring amplified by photonic trapping, to create 3-band PV – a new trend that will be launched, realized with wide-bandgap nanostructured solar cells capable of pronouncedly converting photon energies below their bandgap, thus exploiting the broad solar spectral range. This will allow, for the first time, to increase the efficiency of single-junction PV towards a 50% theoretical maximum, which is close to the limiting efficiency of triple-junction cells but here is attained with a single-junction.

  2. Smart Combination
    Smart combination between PV cells and EC flow cells, in compact PV-EC devices that deliver the energy in hydrogen (H2) fuel synthesized from water splitting, enabling close to 30% solar-to-H2 efficiency with high operation stability, by capitalizing on:
    a) high voltage per junction of the 3-band PV technology, which is favourable to drive the EC reactions;
    b) thermal coupling between PV and EC in single devices, which naturally provides heat management of both systems.

Targeted Fuel

The targeted fuel is a highly convenient energy vector in view of the present European urgency for a resilient, competitive and environment-friendly H2 economy.

Industrial Deployment

All the project developments will be attractive for industrial deployment, since mostly Earth-abundant materials and scalable processes are applied, so that the PV-EC prototypes can be easily customized and scaled for different uses.

Expertise

The expertise of the PI team and his network of collaborators in nanotechnology, multi-band PV, photonics for light-trapping and solar fuels via PV-EC, places him in the best position to realize X-STREAM goals.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.608
Totale projectbegroting€ 1.999.608

Tijdlijn

Startdatum1-5-2024
Einddatum30-4-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSIDADE NOVA DE LISBOApenvoerder

Land(en)

Portugal

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivity

The SunFlower project aims to develop innovative photoelectrochemical technologies to convert CO2 and organic waste into valuable chemicals and fuels, targeting CO2 neutrality in Europe by 2050.

€ 1.999.750
ERC Proof of...

Cost-Effective Charge-Transport Materials for New-Generation Solar Cells

This project aims to develop low-cost charge-transport materials for new-generation photovoltaics, enhancing their commercial viability and supporting the EU's goal of climate neutrality by 2050.

€ 150.000
ERC Consolid...

Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronics

ELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices.

€ 1.991.250
ERC Consolid...

Fluorescent Optical Concentration of Uncollimated Sunlight

FOCUS aims to revolutionize solar energy conversion by developing nanophotonic lenses for high-efficiency luminescent solar concentrators, enhancing photovoltaic and photocatalytic applications.

€ 2.998.125
ERC Proof of...

Scale-up and Demonstrator of Luminescent Waveguide Encoded Films for Indoor Photovoltaics

This project aims to commercialize a new luminescent waveguide encoded film technology to enhance crystalline silicon solar cells' efficiency under indoor LED lighting for IoT devices.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactor

This project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions.

€ 2.201.654
EIC Pathfinder

Advanced Strategies for Development of Sustainable Semiconductors for Scalable Solar Cell Applications

SOLARUP aims to develop scalable, efficient, and sustainable solar cells using nanoengineered zinc phosphide, enhancing energy production for smart applications while reducing material dependence.

€ 2.930.127
Innovation F...

FIRST SMALL-SCALE DEPLOYMENT (FSD) OF A PRE-COMMERCIAL PLANT BASED ON PHOTOELECTROCATALYTIC TECHNOLOGY FOR HYDROGEN PRODUCTION

The SUN2HY project aims to demonstrate the world's first pre-commercial Photoelectrocatalysis plant for sustainable hydrogen production, targeting 201 tH2/year to support local mobility and reduce CO2 emissions.

€ 4.484.293
EIC Pathfinder

Plankton-like Protocells for Artificial Photosynthesis Targeting Carbon-neutral Energy Vectors

PLANKT-ON aims to develop synthetic plankton-like protocells that autonomously convert light, water, and CO2 into O2 and formate, advancing sustainable solar hydrogen technology.

€ 2.533.216
EIC Accelerator

High-efficiency 1 MW Dynamic Electrolyser Unit for cost-efficient production of PtX-based green methanol

Dynelectro aims to develop and test a 1-MW AC:DC Solid Oxide Electrolysis unit to produce 100 tons of green hydrogen, enhancing efficiency and longevity for large-scale commercialization.

€ 2.499.999