GreenH2 production from water and bioalcohols by full solar spectrum in a flow reactor
This project aims to produce green hydrogen and high-value chemicals from water and biomass using a novel solar-driven process with high efficiency and zero carbon emissions.
Projectdetails
Introduction
Water splitting for H2 production driven by solar energy is quite attractive while the current efficiency is very moderate due to both the extremely sluggish water oxidation half-reaction and limited light harvesting (mostly UV-visible light). In addition, the separation of one product H2 from the other O2 during water splitting is very costly.
Project Objectives
The project is designed to address these challenges by:
- Utilizing the full solar spectrum (300-2500nm) instead of UV-visible light (300-700nm).
- Coupling water splitting with biomass-derivative oxidation to avoid water oxidation.
- Well combining solid Z-scheme UV-visible photocatalysis and Infrared-driven thermal catalysis.
- Using a flow double tube reactor instead of batch reactors, thus targeting to produce green H2 from both water and biomass with a high quantum yield of 60%.
Co-Production of Chemicals
Furthermore, the project will co-produce high-value chemicals with a high selectivity of >90%.
Catalyst Integration
In addition, the integration of low-cost and efficient catalysts with novel flow reactors will assure a continuous and efficient production of H2 and high-value chemicals.
Environmental Impact
The entire process does not use fossil fuels nor produce CO2, thus representing a zero carbon-emission technology.
Scalability
Finally, the system can be readily scaled up by numbering up the reactor modules.
Consortium and Expertise
All these are built upon a multidisciplinary and international consortium with global experts in:
- Photocatalysis
- Thermal catalysis
- Reactor engineering
- Product separation
- Simulation
- Social science
Therefore, the scientific and technical challenges, as well as the environmental, societal, and economic impacts, will be fully addressed in the project.
Economic Benefits
The proposed technology will typically benefit the EU economy by providing an innovative green H2 production process from water and biomass, heavily contributing to a low carbon society. In addition, the international team, including members from Asia, will facilitate the technology exploitation outside of the EU, further benefiting the EU economy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.201.654 |
Totale projectbegroting | € 2.201.654 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ACONDICIONAMIENTO TARRASENSE ASSOCIACIONpenvoerder
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
- CROWDHELIX LIMITED
- UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
- PANGAIA GRADO ZERO SRL
- THE UNIVERSITY OF HONG KONG
- EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
- UNIVERSITY COLLEGE LONDON
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energyThe project aims to develop a cost-effective hydrogen production technology using genetically engineered cyanobacteria in large-scale photobioreactors, achieving high energy efficiency and sustainability. | EIC Pathfinder | € 4.194.947 | 2022 | Details |
Single-Atom Photocatalysts Enhanced by a Self-Powered Photonic Glass Reactor to Produce Advanced BiofuelsGlaS-A-Fuels aims to develop efficient advanced biofuels from bio-ethanol using innovative photonic reactors and cooperative catalysts to enhance solar energy conversion and yield. | EIC Pathfinder | € 2.995.840 | 2024 | Details |
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions. | EIC Pathfinder | € 3.229.932 | 2022 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
ELectrOlysis of BIOmassELOBIO aims to develop low-temperature electrolysers for green hydrogen production from biomass, enhancing efficiency and sustainability while reducing costs and environmental impacts. | EIC Pathfinder | € 4.395.570 | 2023 | Details |
Photosynthetic electron focusing technology for direct efficient biohydrogen production from solar energy
The project aims to develop a cost-effective hydrogen production technology using genetically engineered cyanobacteria in large-scale photobioreactors, achieving high energy efficiency and sustainability.
Single-Atom Photocatalysts Enhanced by a Self-Powered Photonic Glass Reactor to Produce Advanced Biofuels
GlaS-A-Fuels aims to develop efficient advanced biofuels from bio-ethanol using innovative photonic reactors and cooperative catalysts to enhance solar energy conversion and yield.
Optimised Halide Perovskite nanocrystalline based Electrolyser for clean, robust, efficient and decentralised pRoduction of H2
OHPERA aims to develop a proof-of-concept PEC cell for efficient solar-driven H2 production and valorization of industrial waste into valuable chemicals, promoting sustainable energy solutions.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
ELectrOlysis of BIOmass
ELOBIO aims to develop low-temperature electrolysers for green hydrogen production from biomass, enhancing efficiency and sustainability while reducing costs and environmental impacts.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Continuous electrolytic-catalytic decoupled water electrolysis for green hydrogen productionH2Bro aims to revolutionize green hydrogen production through a decoupled, high-efficiency electrolysis process using a soluble redox couple for minimal energy loss and enhanced output. | ERC Advanced... | € 2.950.000 | 2023 | Details |
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic ManagementX-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy. | ERC Consolid... | € 1.999.608 | 2024 | Details |
Groene on-site waterstofperoxide elektrochemische productie uit waterHet project test de haalbaarheid van een duurzaam elektrochemisch systeem voor de productie van hoge concentraties waterstofperoxide uit water en groene stroom, met brede industriële toepassingen. | Mkb-innovati... | € 20.000 | 2022 | Details |
Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivityThe SunFlower project aims to develop innovative photoelectrochemical technologies to convert CO2 and organic waste into valuable chemicals and fuels, targeting CO2 neutrality in Europe by 2050. | ERC Consolid... | € 1.999.750 | 2022 | Details |
H2 HollandiaHet H2 Hollandia-project demonstreert de haalbaarheid van een 5 MW PEM elektrolyser die 300 ton groene waterstof per jaar produceert uit overtollige zonne-energie, ter ondersteuning van de energietransitie. | Demonstratie... | € 6.567.117 | Onbekend | Details |
Continuous electrolytic-catalytic decoupled water electrolysis for green hydrogen production
H2Bro aims to revolutionize green hydrogen production through a decoupled, high-efficiency electrolysis process using a soluble redox couple for minimal energy loss and enhanced output.
Power-to-X: STREAMing Hydrogen from 3-Band Solar Cells boosted with Photonic Management
X-STREAM aims to revolutionize sustainable energy by integrating advanced photovoltaic systems with electrochemical storage to achieve high-efficiency hydrogen production from solar energy.
Groene on-site waterstofperoxide elektrochemische productie uit water
Het project test de haalbaarheid van een duurzaam elektrochemisch systeem voor de productie van hoge concentraties waterstofperoxide uit water en groene stroom, met brede industriële toepassingen.
Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivity
The SunFlower project aims to develop innovative photoelectrochemical technologies to convert CO2 and organic waste into valuable chemicals and fuels, targeting CO2 neutrality in Europe by 2050.
H2 Hollandia
Het H2 Hollandia-project demonstreert de haalbaarheid van een 5 MW PEM elektrolyser die 300 ton groene waterstof per jaar produceert uit overtollige zonne-energie, ter ondersteuning van de energietransitie.