Nanofluidic Catalytic Reaction Imaging
The project aims to develop a nanoimaging method to visualize catalytic reactions on single nanoparticles, enhancing catalyst design for energy and environmental applications.
Projectdetails
Introduction
How can we see a catalytic reaction on a single nanoparticle? While our eyes use visible light to create a vivid perception of our world, they are unable to resolve the nanoscale.
Objective
Now imagine light allowing us to equally vividly see a chemical process, thereby enabling us to witness how the structure or chemical composition of a single nanoparticle controls the rate of a catalytic reaction on its surface.
Current Challenges
To date, the lack of a suitable technique prevents this ultimate level of insight at technically relevant conditions. At the same time, gaining such insight is the ultimate goal of catalysis science and a key enabler for the rational design of next-generation catalyst materials needed to address some of humanity's grand challenges in the energy, environmental clean-up, and health sectors.
Method Development
NACAREI therefore develops a nanoimaging method that realizes this ultimate goal. As the key ingredients for achieving the necessary unprecedented resolution, it relies on:
- The combined nano-confinement of reaction products in nanofluidic structures.
- The ultrahigh optical sensitivity of these structures.
Focus Areas
Particular focus will also be put on the development of methods to fabricate or trap size-, shape-, and composition-controlled single sub-10 nm metal nanoparticles inside nanofluidic channels by combining key traits of top-down nanofabrication and colloidal synthesis.
Application of the Platform
The developed nanoimaging platform will be applied to scientific case studies related to catalyst function with respect to the roles of:
- Particle structure
- Surface state
- Chemical composition
- Interaction with the support
This will help uncover the next generation of catalyst design rules.
Long-term Vision
In the long term, I envision the developed nanoscale imaging platform enabling the study of other nanoscale processes, for example in biochemistry, thereby enabling high impact also at other vibrant scientific frontiers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.341.250 |
Totale projectbegroting | € 2.341.250 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CHALMERS TEKNISKA HOGSKOLA ABpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hidden in the Noise: Transient Details of Nanoparticle-Catalyzed Reactions Under Challenging ConditionsThe project aims to enhance the design of metal nanoparticle catalysts for the Haber-Bosch reaction by investigating their dynamics under high-pressure conditions using advanced experimental techniques. | ERC Starting... | € 1.812.500 | 2023 | Details |
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface EngineeringThis project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing. | ERC Starting... | € 1.499.681 | 2023 | Details |
Nanocarbon-Ionic Liquid-Interfaces for Catalytic Activation of NitrogenCILCat aims to revolutionize ammonia production through electrocatalytic nitrogen reduction using confined ionic liquids in porous carbon, promoting a sustainable, carbon-neutral nitrogen economy. | ERC Starting... | € 1.498.590 | 2022 | Details |
Force-Responsive Heterogeneous CatalystsThis project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts. | ERC Consolid... | € 1.999.582 | 2025 | Details |
Metal nanoapertures by nanoimprint to enhance single molecule fluorescence detectionPrintNano4Fluo aims to develop a cost-effective nanofabrication method to integrate nanophotonics with single molecule fluorescence for enhanced detection capabilities. | ERC Proof of... | € 150.000 | 2023 | Details |
Hidden in the Noise: Transient Details of Nanoparticle-Catalyzed Reactions Under Challenging Conditions
The project aims to enhance the design of metal nanoparticle catalysts for the Haber-Bosch reaction by investigating their dynamics under high-pressure conditions using advanced experimental techniques.
Single-Atom Catalysts for a New Generation of Chemical Processes: from Fundamental Understanding to Interface Engineering
This project aims to develop innovative single-atom catalysts for CO2 conversion through advanced synthesis and characterization techniques, enhancing sustainability in chemical manufacturing.
Nanocarbon-Ionic Liquid-Interfaces for Catalytic Activation of Nitrogen
CILCat aims to revolutionize ammonia production through electrocatalytic nitrogen reduction using confined ionic liquids in porous carbon, promoting a sustainable, carbon-neutral nitrogen economy.
Force-Responsive Heterogeneous Catalysts
This project aims to develop tunable graphene-based catalytic materials that enhance reaction performance through externally controlled confinement, bridging the gap between artificial and natural catalysts.
Metal nanoapertures by nanoimprint to enhance single molecule fluorescence detection
PrintNano4Fluo aims to develop a cost-effective nanofabrication method to integrate nanophotonics with single molecule fluorescence for enhanced detection capabilities.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Duurzame katalyse door innovatieve NanocoaterVSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden. | Mkb-innovati... | € 20.000 | 2020 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
Reaction robot with intimate photocatalytic and separation functions in a 3-D network driven by artificial intelligenceCATART aims to develop autonomous reaction robots using AI and 3-D quantum dot networks to efficiently mimic natural chemical production, enhancing productivity and sustainability in the chemical industry. | EIC Pathfinder | € 2.871.775 | 2022 | Details |
Nanoscale virus imaging X-ray microscope based on incoherent diffractionNanoXCAN aims to develop a tabletop X-ray microscope for non-invasive imaging of single viruses, revolutionizing viral research and treatment development in hospitals. | EIC Pathfinder | € 3.723.551 | 2022 | Details |
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin SystemsThis project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets. | EIC Pathfinder | € 2.994.409 | 2023 | Details |
Duurzame katalyse door innovatieve Nanocoater
VSPARTICLE onderzoekt de haalbaarheid van een nanocoater voor katalysedeeltjes om efficiëntere, schonere en uniforme katalysatoren te ontwikkelen, waardoor katalyse-onderzoek en industriële toepassingen versneld worden.
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
Reaction robot with intimate photocatalytic and separation functions in a 3-D network driven by artificial intelligence
CATART aims to develop autonomous reaction robots using AI and 3-D quantum dot networks to efficiently mimic natural chemical production, enhancing productivity and sustainability in the chemical industry.
Nanoscale virus imaging X-ray microscope based on incoherent diffraction
NanoXCAN aims to develop a tabletop X-ray microscope for non-invasive imaging of single viruses, revolutionizing viral research and treatment development in hospitals.
Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems
This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.