In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronics
The INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility.
Projectdetails
Introduction
The development of advanced brain-computer interfaces, wearable and implantable bioelectronic devices, prosthetics, and soft robotics requires the ability to process signals in a highly individualized and localized manner. To achieve this, new materials and devices must be developed that can sense their surroundings, process information locally, and translate it into a format our body can interpret.
Current Challenges
Currently, (bio-)electronic devices rely on remote and energy-intensive cloud processing, but electronic devices that mimic the design of the human brain offer a solution. However, silicon-based devices have limitations such as:
- Rigidity
- Poor biocompatibility
- Operating principles that differ from the ion signal modulation of biology
Emerging Solutions
Organic mixed ionic-electronic conductors (OMIECs) have emerged as a promising option in the field of bioelectronics, as they are:
- Solution processable
- Potentially biocompatible
- Capable of transporting both electronic and ionic signals
Project Goals
The goal of INFER is to create next-generation intelligent bioelectronic devices using in-operando electropolymerization of OMIEC monomers. The proposed research activities aim to:
- Understand how the molecular properties of OMIEC monomers impact their in-operando electropolymerization and the learning capabilities of the resulting biomimetic devices.
- Achieve biorealistic speeds, memory functionalities, and energy efficiencies without the use of auxiliary devices.
- Prototype devices that can locally sense, process, and actuate/stimulate.
Long-term Vision
The long-term goal is to create a brain-inspired intelligent bioelectronic platform that brings a new paradigm for in-sensor computing at the interface with biology.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.980 |
Totale projectbegroting | € 1.999.980 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LINKOPINGS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing.Develop a miniaturized, self-contained biosensing technology using neuromorphic devices for real-time monitoring and classification of neurodegenerative biomarkers in individualized healthcare. | ERC Starting... | € 1.500.000 | 2025 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC Starting... | € 1.499.213 | 2023 | Details |
Neuromorphic Learning in Organic Adaptive Biohybrid SystemsThis project aims to develop a neuromorphic bioelectronic platform for adaptive control of soft robotic actuators using organic materials and local biosignal modulation. | ERC Consolid... | € 1.996.143 | 2024 | Details |
5D Electro-Mechanical Bio-Interface for Neuronal Tissue EngineeringDevelop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications. | ERC Starting... | € 1.750.000 | 2024 | Details |
Hydrogel Machines for Seamless Living System InterfacesGELECTRO aims to develop electrically conductive hydrogels for bioelectronic interfaces that mimic biological systems, enhancing tissue repair and organoid development through advanced sensing and actuation. | ERC Consolid... | € 1.999.473 | 2024 | Details |
Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing.
Develop a miniaturized, self-contained biosensing technology using neuromorphic devices for real-time monitoring and classification of neurodegenerative biomarkers in individualized healthcare.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Neuromorphic Learning in Organic Adaptive Biohybrid Systems
This project aims to develop a neuromorphic bioelectronic platform for adaptive control of soft robotic actuators using organic materials and local biosignal modulation.
5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering
Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.
Hydrogel Machines for Seamless Living System Interfaces
GELECTRO aims to develop electrically conductive hydrogels for bioelectronic interfaces that mimic biological systems, enhancing tissue repair and organoid development through advanced sensing and actuation.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc CircuitsICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety. | EIC Pathfinder | € 2.664.940 | 2024 | Details |
Green materials for neurOMorphic signal processing by organic synaptic transistorsGreenOMorph aims to drastically reduce the environmental impact of electronics by using neuromorphic computing and organic materials, promoting sustainable manufacturing and reducing reliance on critical raw materials. | EIC Pathfinder | € 4.041.021 | 2024 | Details |
BioFunctional IntraNeural ElectrodesBioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology. | EIC Pathfinder | € 1.945.622 | 2023 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
Biointegrable soft actuators alimented by metabolic energyINTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency. | EIC Pathfinder | € 1.698.750 | 2022 | Details |
In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits
ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.
Green materials for neurOMorphic signal processing by organic synaptic transistors
GreenOMorph aims to drastically reduce the environmental impact of electronics by using neuromorphic computing and organic materials, promoting sustainable manufacturing and reducing reliance on critical raw materials.
BioFunctional IntraNeural Electrodes
BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
Biointegrable soft actuators alimented by metabolic energy
INTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency.