In-operando growth of organic mixed ionic-electronic conductors for brain-inspired electronics

The INFER project aims to develop brain-inspired bioelectronic devices using organic mixed ionic-electronic conductors for localized signal processing and enhanced biocompatibility.

Subsidie
€ 1.999.980
2024

Projectdetails

Introduction

The development of advanced brain-computer interfaces, wearable and implantable bioelectronic devices, prosthetics, and soft robotics requires the ability to process signals in a highly individualized and localized manner. To achieve this, new materials and devices must be developed that can sense their surroundings, process information locally, and translate it into a format our body can interpret.

Current Challenges

Currently, (bio-)electronic devices rely on remote and energy-intensive cloud processing, but electronic devices that mimic the design of the human brain offer a solution. However, silicon-based devices have limitations such as:

  • Rigidity
  • Poor biocompatibility
  • Operating principles that differ from the ion signal modulation of biology

Emerging Solutions

Organic mixed ionic-electronic conductors (OMIECs) have emerged as a promising option in the field of bioelectronics, as they are:

  • Solution processable
  • Potentially biocompatible
  • Capable of transporting both electronic and ionic signals

Project Goals

The goal of INFER is to create next-generation intelligent bioelectronic devices using in-operando electropolymerization of OMIEC monomers. The proposed research activities aim to:

  1. Understand how the molecular properties of OMIEC monomers impact their in-operando electropolymerization and the learning capabilities of the resulting biomimetic devices.
  2. Achieve biorealistic speeds, memory functionalities, and energy efficiencies without the use of auxiliary devices.
  3. Prototype devices that can locally sense, process, and actuate/stimulate.

Long-term Vision

The long-term goal is to create a brain-inspired intelligent bioelectronic platform that brings a new paradigm for in-sensor computing at the interface with biology.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.980
Totale projectbegroting€ 1.999.980

Tijdlijn

Startdatum1-4-2024
Einddatum31-3-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LINKOPINGS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Neuromorphic Flexible Electro/chemical Interface for in-Memory Bio-Sensing and Computing.

Develop a miniaturized, self-contained biosensing technology using neuromorphic devices for real-time monitoring and classification of neurodegenerative biomarkers in individualized healthcare.

€ 1.500.000
ERC Starting...

Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway

Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.

€ 1.499.213
ERC Consolid...

Neuromorphic Learning in Organic Adaptive Biohybrid Systems

This project aims to develop a neuromorphic bioelectronic platform for adaptive control of soft robotic actuators using organic materials and local biosignal modulation.

€ 1.996.143
ERC Starting...

5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering

Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.

€ 1.750.000
ERC Consolid...

Hydrogel Machines for Seamless Living System Interfaces

GELECTRO aims to develop electrically conductive hydrogels for bioelectronic interfaces that mimic biological systems, enhancing tissue repair and organoid development through advanced sensing and actuation.

€ 1.999.473

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

In-situ & operando organiC electrochemical transistors monitored by non-destructive spectroscopies for Organic cmos-like NeuromorphIc Circuits

ICONIC aims to advance implantable AI organic electronic devices for chronic disease management by investigating PMIECs, leading to smart drug-delivery systems with enhanced accuracy and safety.

€ 2.664.940
EIC Pathfinder

Green materials for neurOMorphic signal processing by organic synaptic transistors

GreenOMorph aims to drastically reduce the environmental impact of electronics by using neuromorphic computing and organic materials, promoting sustainable manufacturing and reducing reliance on critical raw materials.

€ 4.041.021
EIC Pathfinder

BioFunctional IntraNeural Electrodes

BioFINE aims to develop advanced flexible intraneural multielectrode arrays for improved long-term integration with peripheral nerves, enhancing bionic limb communication and neurotechnology.

€ 1.945.622
EIC Pathfinder

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

€ 2.987.655
EIC Pathfinder

Biointegrable soft actuators alimented by metabolic energy

INTEGRATE aims to revolutionize implantable devices by using metabolic energy to power 3D-printed soft actuating materials and an energy-harvesting organ, enhancing autonomy and efficiency.

€ 1.698.750