Development of Suprasensors and Assays for Molecular Diagnostics

SupraSense aims to develop advanced biomimetic sensors for detecting metabolites in biofluids, enhancing diagnostic selectivity and sensitivity for early disease detection.

Subsidie
€ 1.994.069
2023

Projectdetails

Introduction

SupraSense combines completely new strategies to design and realize biomimetic artificial receptors for bioactive small molecules, i.e. metabolites, with the aim of overcoming long-standing selectivity and sensitivity limitations that hindered other synthetic sensory systems from reaching diagnostic applications.

Development of SupraSensors

Sophisticated yet easy to fabricate “SupraSensors” will be developed based on unprecedented hybrid zeolitic materials whose binding cavities are modulated by peptide-based cofactors, thereby mimicking enzyme pockets. SupraSensors will be functional and directly applicable for molecular diagnostics in urine, saliva, and blood and will be of utility in point-of-care units and personal homes. Emphasis is given to the detection of metabolites that are important disease indicators.

Expertise and Strategy

I am an expert on “conventional” synthetic chemosensors and have studied both their merits and fundamental shortcomings. Out of this deep-rooted analysis, I developed the proposed ambitious strategy that marries principles of molecular recognition with materials science and chemistry-informed deep learning.

Advancements in the Field

These SupraSensors will advance the field through the following elements:

  1. High-energy water release from microporous materials ensures high binding affinity.
  2. Strategically placed peptide-based recognition elements provide selectivity while offering synthetic tunability.
  3. Information-rich signal output from SupraSensor libraries enables metabolite distinction in biofluids.
  4. Novel signal amplification concepts increase sensitivity.

SupraSensor discovery will be fast and generalizable to many metabolite classes.

Potential Impact

SupraSense has the potential to unleash supreme opportunities for multiparameter diagnostics, which will be essential for patient subgrouping based on metabolic phenotypes. The new concepts developed herein have the prospect to revolutionize early detection of emerging cardiovascular events, inflammations, sepsis, and other metabolic or aging-associated diseases.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.994.069
Totale projectbegroting€ 1.994.069

Tijdlijn

Startdatum1-7-2023
Einddatum30-6-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KARLSRUHER INSTITUT FUER TECHNOLOGIEpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Biosensing by Sequence-based Activity Inference

This project aims to develop a data-driven pipeline for engineering genetically encoded biosensors to enhance molecule detection and support sustainable bioprocesses in synthetic biology.

€ 1.499.453
ERC Consolid...

Legonucleotides for detection

Chem2Sense aims to revolutionize biosensor development by creating high-affinity aptalegomers through reversible aptamer conjugation and advanced nanopore sequencing techniques.

€ 1.999.144
ERC Advanced...

Protein function regulation through inserts for response to biological, chemical and physical signals

This project aims to develop a modular platform for engineering proteins to sense and respond to diverse signals, enhancing their functionality for innovative biomedical applications.

€ 2.500.000
ERC Proof of...

Fingerprinting Single Protein Molecules for Biomarker Assisted Precision Medicine

SM-ProTrack aims to develop a low-cost, highly sensitive single-molecule sensing technology for detecting AMD biomarkers in small clinical samples, enhancing diagnostic capabilities and commercialization potential.

€ 150.000
ERC Consolid...

Kinetic selectivity in molecular sieve sensors

KISSIES aims to develop a novel sensor technology using tailored metal-organic frameworks to selectively detect volatile organic compounds in complex environments, enhancing applications in health and safety.

€ 2.480.500

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

SUPRAMOLECULAR AGENTS AS RADIOTHERANOSTIC DRUGS

SMARTdrugs aims to revolutionize cancer treatment by developing supramolecular radiotheranostics that integrate diagnostics and therapy for targeted drug delivery.

€ 2.135.087
EIC Pathfinder

Versatile Amplification Method for Single-Molecule Detection in Liquid Biopsy

VerSiLiB aims to develop an enzyme-free amplification platform for detecting proteins and nucleic acids in liquid biopsies, enhancing cancer management through novel affinity-mediated transport.

€ 2.994.244
EIC Pathfinder

Universal GPCR Activity Sensor for Next Generation Drug Discovery

This project aims to develop a novel single-assay technology platform for GPCR drug discovery, enhancing detection and classification of drug candidates to improve efficacy and reduce failures.

€ 2.965.384
Mkb-innovati...

DETACT - Detection of Enzymes and muTAtions for Cancer Treatment

Cytura Therapeutics en ENPICOM ontwikkelen een innovatieve diagnostische assay voor vroege kankerdetectie door het meten van enzymactiviteit en mutatiepatronen in bloedcellen.

€ 215.845
Mkb-innovati...

Elektrochemische biosensoren met enzymvervangende bioherkenningselementen

Paramedir B.V. onderzoekt de haalbaarheid van innovatieve elektrochemische biosensoren voor continue biomarker-detectie, met als doel tijdige diagnose en behandeling van ziekten te verbeteren.

€ 20.000