Deuterium labeling of GLUCOse improves magnetic resonance imaging Sensitivity to CANcer metabolism
GLUCO-SCAN aims to develop and clinically evaluate a novel whole-body deuterium metabolic imaging (DMI) method for cancer assessment, overcoming PET's limitations and enabling widespread screening.
Projectdetails
Introduction
The targeted scientific breakthrough of GLUCO-SCAN is the development and clinical evaluation of a disruptive whole-body molecular imaging concept for cancer assessment. The only currently established whole-body molecular imaging device is positron emission tomography (PET).
Limitations of Current Technology
Glucose (Glc)-sensitive PET is widely used in cancer diagnosis and treatment assessment, but has several major limitations:
- PET involves harmful ionizing radiation.
- PET is expensive and not widely available.
- PET cannot differentiate between cancer-specific and normal cellular glucose uptake.
These limitations prohibit an even more widespread use of PET, e.g., for screening.
Proposed Solution
We propose a new Magnetic Resonance Imaging (MRI) concept, whole-body deuterium metabolic imaging (DMI), that will overcome these limitations. Deuteration is a simple chemical procedure with which it is possible to artificially label a broad range of molecules with an equally broad range of potential applications, e.g., targeting Glc metabolism in cancer.
After ingestion, this labeled Glc is metabolized in cells, and the label is transferred to all metabolic products, which can be tracked by DMI.
Research Objectives
Building on our recent preliminary results in Nature Biomed, we propose a combination of novel MRI hardware, dynamic spectroscopic data sampling, deep learning algorithms, and a clinical validation to answer the following three research questions in a 5-year project:
- Is DMI a viable alternative for whole-body cancer assessment?
- How is DMI positioned compared to Glc-sensitive PET?
- Can DMI be performed on widely available MRI systems and simultaneously with standard MRI?
Impact of GLUCO-SCAN
GLUCO-SCAN will fill a gap in current medical imaging by offering an alternative for whole-body PET examinations and potentially even for screening of high-risk populations. Ultimately, it will pave the way for a new generation of MR scanners with all-in-one whole-body imaging capability that would capture morphologic and molecular information simultaneously.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.495.924 |
Totale projectbegroting | € 2.495.924 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MEDIZINISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Revealing liver micrometastases in vivo using ultra-high definition MRIMicroMetSCAN aims to revolutionize MRI techniques for early detection of liver micrometastases, enhancing cancer diagnosis and treatment through improved imaging sensitivity and biological insights. | ERC Starting... | € 1.998.456 | 2025 | Details |
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRIDevelop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics. | ERC Starting... | € 1.497.669 | 2024 | Details |
MAGNIFICO-Pre-commercialization of multifunctional targeted MRI-contrast enhancing agents for brain researchThis project aims to enhance MRI's capabilities for brain disease research by developing targeted fluorescent contrast agents and engineering cells for improved in vivo imaging. | ERC Proof of... | € 150.000 | 2022 | Details |
Screening And Future Enhanced MRISAFE-MRI seeks to enhance breast cancer detection and MRI performance by implementing abbreviated screening for younger women and reducing contrast use through advanced imaging techniques. | ERC Consolid... | € 2.984.796 | 2023 | Details |
Introducing deuterium for next generation chemical biology probes and direct imagingThis project aims to revolutionize microscopy by using deuterated compounds for super-resolution imaging and drug tracking in live cells, enhancing protein localization and neural signaling without genetic modifications. | ERC Starting... | € 1.499.469 | 2022 | Details |
Revealing liver micrometastases in vivo using ultra-high definition MRI
MicroMetSCAN aims to revolutionize MRI techniques for early detection of liver micrometastases, enhancing cancer diagnosis and treatment through improved imaging sensitivity and biological insights.
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRI
Develop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics.
MAGNIFICO-Pre-commercialization of multifunctional targeted MRI-contrast enhancing agents for brain research
This project aims to enhance MRI's capabilities for brain disease research by developing targeted fluorescent contrast agents and engineering cells for improved in vivo imaging.
Screening And Future Enhanced MRI
SAFE-MRI seeks to enhance breast cancer detection and MRI performance by implementing abbreviated screening for younger women and reducing contrast use through advanced imaging techniques.
Introducing deuterium for next generation chemical biology probes and direct imaging
This project aims to revolutionize microscopy by using deuterated compounds for super-resolution imaging and drug tracking in live cells, enhancing protein localization and neural signaling without genetic modifications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
DDG-MRI for cancer detection - A novel medical imaging approach that correlates to FDG-PET without ionising radiationThe DDG-MRI project aims to develop a non-ionizing MRI technique using a novel deuterated glucose analogue to provide PET-like imaging for cancer detection and treatment monitoring. | EIC Pathfinder | € 2.991.061 | 2024 | Details |
MIRACLE the platform for virtual biopsies; introducing Metabolic MRI-as-a-Service for oncologic careMIRACLE aims to develop a non-invasive MRI add-on for virtual biopsies, enabling personalized cancer treatment decisions by providing structural and metabolic tumor information globally. | EIC Transition | € 2.495.127 | 2022 | Details |
REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTIONRETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine. | EIC Pathfinder | € 3.126.347 | 2023 | Details |
Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic InterventionsMITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs. | EIC Transition | € 2.100.238 | 2022 | Details |
Early detection of treatment response in breast cancerThe project aims to enhance breast cancer treatment through Hyperpolarized Magnetic Resonance imaging for early detection of non-responders, improving outcomes and reducing side effects. | EIC Transition | € 2.499.229 | 2024 | Details |
DDG-MRI for cancer detection - A novel medical imaging approach that correlates to FDG-PET without ionising radiation
The DDG-MRI project aims to develop a non-ionizing MRI technique using a novel deuterated glucose analogue to provide PET-like imaging for cancer detection and treatment monitoring.
MIRACLE the platform for virtual biopsies; introducing Metabolic MRI-as-a-Service for oncologic care
MIRACLE aims to develop a non-invasive MRI add-on for virtual biopsies, enabling personalized cancer treatment decisions by providing structural and metabolic tumor information globally.
REAL TIME MOLECULAR IMAGER WITH UNSURPASSED RESOLUTION
RETIMAGER aims to revolutionize PET imaging by achieving ten-fold improvements in spatial and temporal resolution, enabling real-time, high-sensitivity imaging for personalized precision medicine.
Non-ionizing Metabolic Imaging for predicting the effect of and guiding Therapeutic Interventions
MITI aims to develop advanced non-invasive metabolic imaging technology for early disease detection and therapy effectiveness assessment, improving patient outcomes and reducing healthcare costs.
Early detection of treatment response in breast cancer
The project aims to enhance breast cancer treatment through Hyperpolarized Magnetic Resonance imaging for early detection of non-responders, improving outcomes and reducing side effects.