MAGNIFICO-Pre-commercialization of multifunctional targeted MRI-contrast enhancing agents for brain research
This project aims to enhance MRI's capabilities for brain disease research by developing targeted fluorescent contrast agents and engineering cells for improved in vivo imaging.
Projectdetails
Introduction
Magnetic Resonance Imaging (MRI) is a non-damaging and non-invasive imaging modality, with the abilities to effortlessly image the entire brain at any depth. However, MRI provides images with low contrast and very poor resolution, and these are but an indirect description of features in the tissue (e.g., cells) because MRI images water protons.
Limitations of MRI
These aspects limit the use of MRI in pre-clinical research settings (e.g., biomedical research) to study brain diseases. Resultantly, pharmaceutical and biotechnology companies are constantly in search of novel methods that endow MRI with capabilities to distinguish defined biological targets for the study of brain diseases in animal models. Currently, there are no suitable solutions.
Proposed Solution
We specifically address these shortcomings and extend the capabilities of MRI by developing an all-in-one solution. The solution consists of:
- The synthesis of novel targeted fluorescent contrast agents suitable for light microscopy, computed tomography, and MRI.
- The parallel engineering of cells.
When combined, cells in the brains of animals can be detected by MRI in vivo.
Validation Protocol
Lastly, we provide a unique ex vivo protocol for validating the targets imaged by MRI in vivo.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano-Biological Contrast Agent Platform for MRI ImagingNANO-IMAGING aims to develop customizable, safe, and tissue-specific MRI contrast agents using metal-protein hybrid nanostructures to enhance diagnostic imaging efficiency. | ERC Proof of... | € 150.000 | 2022 | Details |
A Data-driven Approach to Microstructural ImagingADAMI aims to revolutionize tissue microstructure imaging by using a data-driven MRI approach, enhancing disease detection and monitoring through reliable, in vivo insights into cellular composition. | ERC Consolid... | € 1.999.706 | 2024 | Details |
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRIDevelop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics. | ERC Starting... | € 1.497.669 | 2024 | Details |
Multifaceted molecular MRI toolbox to uncover Zn2+ in physiology and pathologyZincMRI aims to spatially map dynamic Zn2+ levels and gene expression in vivo using a novel MRI approach, enhancing our understanding of Zn2+ biology in health and disease. | ERC Consolid... | € 1.999.549 | 2023 | Details |
Signal-enhanced MRI contrast agents for neurodegenerationThis project aims to develop and validate new magnetic resonance technologies for early, non-invasive diagnosis of neurodegenerative diseases using metabolic contrast agents. | ERC Proof of... | € 150.000 | 2022 | Details |
Nano-Biological Contrast Agent Platform for MRI Imaging
NANO-IMAGING aims to develop customizable, safe, and tissue-specific MRI contrast agents using metal-protein hybrid nanostructures to enhance diagnostic imaging efficiency.
A Data-driven Approach to Microstructural Imaging
ADAMI aims to revolutionize tissue microstructure imaging by using a data-driven MRI approach, enhancing disease detection and monitoring through reliable, in vivo insights into cellular composition.
Transformative Pediatric Brain Cancer Imaging using Integrated Biophysics-AI Molecular MRI
Develop a novel AI-driven molecular MRI technology for rapid, noninvasive monitoring of pediatric brain cancer treatment response, enhancing precision medicine and understanding of tumor dynamics.
Multifaceted molecular MRI toolbox to uncover Zn2+ in physiology and pathology
ZincMRI aims to spatially map dynamic Zn2+ levels and gene expression in vivo using a novel MRI approach, enhancing our understanding of Zn2+ biology in health and disease.
Signal-enhanced MRI contrast agents for neurodegeneration
This project aims to develop and validate new magnetic resonance technologies for early, non-invasive diagnosis of neurodegenerative diseases using metabolic contrast agents.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Truly portable MRI for extremity and brain imaging anywhere & everywhereThe NextMRI project aims to develop portable low-field MRI systems for accessible point-of-care imaging, enhancing diagnostic capabilities and usability for underserved populations globally. | EIC Transition | € 2.494.415 | 2023 | Details |
MRI-scannerHet project onderzoekt de haalbaarheid van een compacte, goedkopere 3 Tesla MRI-scanner met supergeleidende magneten en stikstofkoeling. | Mkb-innovati... | € 20.000 | 2023 | Details |
DDG-MRI for cancer detection - A novel medical imaging approach that correlates to FDG-PET without ionising radiationThe DDG-MRI project aims to develop a non-ionizing MRI technique using a novel deuterated glucose analogue to provide PET-like imaging for cancer detection and treatment monitoring. | EIC Pathfinder | € 2.991.061 | 2024 | Details |
Multi Nuclei CoilHet project onderzoekt de haalbaarheid van een Multi Nuclei Coil voor het in kaart brengen van verschillende kernen met MRI-scanners. | Mkb-innovati... | € 20.000 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Truly portable MRI for extremity and brain imaging anywhere & everywhere
The NextMRI project aims to develop portable low-field MRI systems for accessible point-of-care imaging, enhancing diagnostic capabilities and usability for underserved populations globally.
MRI-scanner
Het project onderzoekt de haalbaarheid van een compacte, goedkopere 3 Tesla MRI-scanner met supergeleidende magneten en stikstofkoeling.
DDG-MRI for cancer detection - A novel medical imaging approach that correlates to FDG-PET without ionising radiation
The DDG-MRI project aims to develop a non-ionizing MRI technique using a novel deuterated glucose analogue to provide PET-like imaging for cancer detection and treatment monitoring.
Multi Nuclei Coil
Het project onderzoekt de haalbaarheid van een Multi Nuclei Coil voor het in kaart brengen van verschillende kernen met MRI-scanners.
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.