Cancer tailored next generation cellular therapies

CATACLIS aims to revolutionize cell therapy for solid cancers by developing patient-tailored cellular products using patient-derived models, enhancing clinical relevance and efficacy.

Subsidie
€ 2.000.000
2024

Projectdetails

Introduction

Cellular therapies are commonly used to treat hematological cancers but have yet to be established in solid oncology. Their evolution has been fueled by hypotheses derived from cell biological observations in cancer models. Most approaches, however, will either never enter clinical development or fail clinical testing, often due to inadequate models of disease and their lack of relevance to human biology.

Project Overview

In CATACLIS, I propose the first unbiased development of cellular products based on patient characteristics in order to address this enormous translational gap and ultimately provide more effective cell therapies to patients with solid cancers. CATACLIS will herald a paradigm shift in cell therapy by reversing conventional model-to-patient innovation ("forward translation") to patient-generated ideas tested in patient-derived models into clinical trials ("reverse translation").

Research Goals

I have discovered novel approaches to improve T cell function, which resulted in a clinical trial and established me as a leader in the field of cellular therapies. The challenge I will now face is to move beyond model bias and integrate cancer heterogeneity across patients and entities.

In CATACLIS, I will use single-cell data sets from patients to inform the design of next-generation cellular therapies capable of overcoming current limitations in solid cancers, namely:

  1. Access to tumor tissue
  2. Target antigen(s) selection
  3. Immune suppression

Methodology

To maximize clinical relevance, CATACLIS will use patient-derived materials from hypothesis generation to in vivo testing. This will enable me to create cellular products tailored to the patient's cancer.

Expected Outcomes

My research will not only result in novel cellular products for further testing and development toward clinical trials, but it will also serve as a resource for the development of innovative therapies based on patient data, contribute to the European open science objectives, and reduce the burden of animal experimentation.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder
  • KLINIKUM DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500
ERC Proof of...

Novel T cell therapies against lymphocytic leukaemia

CATCH aims to enhance T-cell activation in chronic lymphocytic leukaemia using CAR-T and tri-specific antibodies, while assessing commercial feasibility and developing a business strategy.

€ 150.000
ERC Consolid...

Unlocking a T cell-mediated Immune response in therapy-challenged Tumors

UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.

€ 2.000.000
ERC Advanced...

Developing novel single-cell technologies to model and perturb intra-tumor interactions and signaling – an innovation program for the next generation of immunotherapies

The TROJAN-Cell project aims to engineer immune responses against tumors by understanding immune-suppressive mechanisms in the tumor microenvironment using advanced single-cell technologies.

€ 2.500.000
ERC Starting...

Improving CAR-T cell therapies through AAV-mediated genetic engineering

This project aims to develop in vivo gene-targeted CAR-T cell therapies using evolved AAV for T cell delivery and Cas9 editing, ultimately translating findings to human clinical trials.

€ 1.503.155

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

PRO CellecT

Pan Cancer T ontwikkelt een innovatieve TCR-gebaseerde therapie voor hard-to-treat kankers, met een strategisch plan om de commerciële haalbaarheid en waarde te maximaliseren.

€ 20.000
EIC Pathfinder

Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process control

The SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors.

€ 1.364.281
EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
EIC Pathfinder

CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment

CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.

€ 2.733.931
EIC Transition

Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming

The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.

€ 2.480.367