Biomechanical modelling and computational imaging to identify different causes of back pain in large epidemiological studies
The iBack-epic project aims to utilize advanced imaging and deep learning to identify biomechanical and inflammatory causes of chronic back pain, enhancing understanding and prevention strategies.
Projectdetails
Introduction
Chronic back pain is a major burden and source of disability worldwide. It is primarily attributed to different biomechanical factors, but can also have inflammatory, neurological, or psychological causes. Clinical findings and conventional imaging cannot reliably distinguish different causes of back pain.
Biomechanical Models
In contrast, individual biomechanical models can quantify diverse (pathologic) loading patterns and thus could be used to distinguish different aetiologies of back pain, to better understand individual pathophysiology, and guide preventive strategies.
Project Development
During my recent ERC-StG iBack, I developed quantitative imaging methods and deep-learning based image processing to automatically generate a fully individualized biomechanical model of the thoracolumbar spine.
Simultaneously, two large-scale epidemiologic studies collected clinical and high-resolution imaging data of the spine of more than 15,000 participants so far, aiming at more than 35,000 participants by mid-2022.
Objectives of iBack-epic
The high-level objective of iBack-epic is to use such novel image analysis techniques to identify different biomechanical and inflammatory causes of back pain in study participants.
Methodology
I will adopt and extend my recently developed deep-learning based spine labeling and segmentation algorithms to fully automatically calculate individual biomechanical, functional, and morphometric parameters of the spine.
In this large-scale population data, I will:
- Identify different biomechanical loading patterns.
- Use quantitative image-based parameters to discriminate normal aging from pathologic degeneration.
- Identify pathological conditions that are linked to back pain or subsequent development of chronic back pain.
Expected Outcomes
Such a differentiation, for the first time based on quantitative image data, will allow for a better understanding of the underlying pathophysiology of back pain, an improved risk stratification, a tailored investigation of genetic causes, and thus will help to better guide preventive strategies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.993 |
Totale projectbegroting | € 1.999.993 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 30-4-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- KLINIKUM DER TECHNISCHEN UNIVERSITÄT MÜNCHEN (TUM KLINIKUM)penvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A mechanism-based approach to the prevention of chronic pain and its comorbid mental disordersThis project aims to transform chronic pain treatment by identifying transdiagnostic mechanisms and developing digital and virtual reality interventions to prevent chronicity and associated mental disorders. | ERC Advanced... | € 2.424.481 | 2024 | Details |
Rejuvenation of the Intervertebral Disc Using Self-Healing Biomimetic Extracellular Matrix Biomaterial Tissue AdhesivesThis project aims to develop a self-healing biomimetic hydrogel for treating degenerated intervertebral discs, restoring tissue properties and improving patient outcomes in minimally invasive spine treatments. | ERC Proof of... | € 150.000 | 2024 | Details |
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug PenetrationThis project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes. | ERC Starting... | € 1.499.693 | 2024 | Details |
Intelligent Optoacoustic Radiomics via Synergistic Integration of System Models and Medical KnowledgeEchoLux aims to revolutionize radiomics by integrating imaging hardware, medical knowledge, and Bayesian reasoning for explainable diagnostics in optoacoustic imaging of peripheral neuropathy. | ERC Starting... | € 1.499.976 | 2022 | Details |
Integrated Mechanistic Modelling and Analysis of Large-scale Biomedical DataINTEGRATE aims to enhance cancer treatment by developing advanced computational models that integrate patient-derived data for improved drug targeting and clinical trial planning. | ERC Consolid... | € 1.854.546 | 2024 | Details |
A mechanism-based approach to the prevention of chronic pain and its comorbid mental disorders
This project aims to transform chronic pain treatment by identifying transdiagnostic mechanisms and developing digital and virtual reality interventions to prevent chronicity and associated mental disorders.
Rejuvenation of the Intervertebral Disc Using Self-Healing Biomimetic Extracellular Matrix Biomaterial Tissue Adhesives
This project aims to develop a self-healing biomimetic hydrogel for treating degenerated intervertebral discs, restoring tissue properties and improving patient outcomes in minimally invasive spine treatments.
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration
This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.
Intelligent Optoacoustic Radiomics via Synergistic Integration of System Models and Medical Knowledge
EchoLux aims to revolutionize radiomics by integrating imaging hardware, medical knowledge, and Bayesian reasoning for explainable diagnostics in optoacoustic imaging of peripheral neuropathy.
Integrated Mechanistic Modelling and Analysis of Large-scale Biomedical Data
INTEGRATE aims to enhance cancer treatment by developing advanced computational models that integrate patient-derived data for improved drug targeting and clinical trial planning.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Back in MotionHet project onderzoekt de haalbaarheid van een AI-module voor de behandeling van chronische aspecifieke rugklachten via een smartwatch. | Mkb-innovati... | € 20.000 | 2024 | Details |
Oro Movement AIDit project onderzoekt de haalbaarheid van AI en machine learning voor het ontwikkelen van een instrument dat chronische pijn bij patiënten effectief kan monitoren en analyseren. | Mkb-innovati... | € 20.000 | 2022 | Details |
Oro Muscles Analytics DevelopmentBlackTop Labs ontwikkelt een prototype voor een analytisch systeem dat spieractiviteit en beweging analyseert om fysiotherapeuten te ondersteunen bij revalidatie en pijnbestrijding. | Mkb-innovati... | € 190.890 | 2022 | Details |
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analyticsThe 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders. | EIC Pathfinder | € 1.998.347 | 2023 | Details |
A novel non-invasive therapy based on injectable viscous gel for restoring the natural biomechanics of the spine and relieving patients from painNC Biomatrix's VitaDisc is a revolutionary non-invasive injectable biomatrix that restores disc function and height, addressing disc degeneration and offering a scalable solution for orthopedic treatments. | EIC Accelerator | € 2.499.999 | 2023 | Details |
Back in Motion
Het project onderzoekt de haalbaarheid van een AI-module voor de behandeling van chronische aspecifieke rugklachten via een smartwatch.
Oro Movement AI
Dit project onderzoekt de haalbaarheid van AI en machine learning voor het ontwikkelen van een instrument dat chronische pijn bij patiënten effectief kan monitoren en analyseren.
Oro Muscles Analytics Development
BlackTop Labs ontwikkelt een prototype voor een analytisch systeem dat spieractiviteit en beweging analyseert om fysiotherapeuten te ondersteunen bij revalidatie en pijnbestrijding.
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analytics
The 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders.
A novel non-invasive therapy based on injectable viscous gel for restoring the natural biomechanics of the spine and relieving patients from pain
NC Biomatrix's VitaDisc is a revolutionary non-invasive injectable biomatrix that restores disc function and height, addressing disc degeneration and offering a scalable solution for orthopedic treatments.