Non-invasive patterned electrical neurostimulation of the retina
This project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases.
Projectdetails
Introduction
Retinal implants remain one of the most demanding technologies in brain-machine interfacing. State-of-the-art devices have yet to reach the needed performances. The main barriers are sub-optimal stimulation parameters and long development and testing procedures.
Challenges in Current Approaches
While invasive approaches have yet to achieve the resolution performances needed by millions of patients blinded by retinal degenerative diseases, non-invasive approaches in the form of trans-orbital stimulation have received no attention. Yet, they offer potentially dramatically cheaper and easier to adapt and optimize technology.
Project Goals
The main goal of this project is to advance the field of retina neurostimulation by developing new tools for the study and interfacing with the retina. In particular:
- Bi-directional electrophysiological interface which can record and stimulate the intact retina (in the eye).
- Soft multi-electrode arrays for non-invasive stimulation of the retina (soft trans-orbital electrodes).
Research Methodology
We will use these tools to study the retina in its intact form (in animal models) and we will implement the gained know-how in humans to study non-invasive stimulation.
Establishing a New Platform
In this project, we will establish a new platform for bi-directional electrophysiological interfacing with the intact retina and we will use it to study the retina in its intact form. Such investigations have groundbreaking nature as they can advance both the fundamental understanding of the retina and improve the manner by which we stimulate the retina to generate artificial vision.
Specific Aims
Specifically, we aim to:
- Record spontaneous wave activity and light-sensitive ganglion cells.
- Optimize electrical stimulation parameters in the intact retina.
- Measure retina responses to trans-orbit stimulation.
Ultimate Goal
As the ultimate goal of the project, we aim to establish the foundation of trans-orbital stimulation as a new non-invasive paradigm for functional vision in patients suffering from retinal degenerative diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Inducing functionality in retinal organoids with electrical activities derived from developing retinaThis project aims to enhance the functionality of retinal organoids by using electrophysiological insights from mouse retina development and mathematical models to induce naturalistic electrical features. | ERC Starting... | € 1.498.364 | 2023 | Details |
Retinal Mesh OptoelectronicsThe project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC Starting... | € 1.499.213 | 2023 | Details |
Polymer pRobes fOr a VISual prOsthesisPROVISO aims to develop flexible polymer electrodes for chronic implantation in the visual cortex to restore rudimentary vision in blind individuals by inducing artificial light perception. | ERC Proof of... | € 150.000 | 2024 | Details |
Optical imaging platform for high-throughput longitudinal studies of the eye in disease modelsThe OPTIMEYEZ project aims to enhance a novel multi-contrast optical imaging platform for non-invasive retinal studies, facilitating drug development in neurological diseases while reducing animal use. | ERC Proof of... | € 150.000 | 2023 | Details |
Inducing functionality in retinal organoids with electrical activities derived from developing retina
This project aims to enhance the functionality of retinal organoids by using electrophysiological insights from mouse retina development and mathematical models to induce naturalistic electrical features.
Retinal Mesh Optoelectronics
The project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Polymer pRobes fOr a VISual prOsthesis
PROVISO aims to develop flexible polymer electrodes for chronic implantation in the visual cortex to restore rudimentary vision in blind individuals by inducing artificial light perception.
Optical imaging platform for high-throughput longitudinal studies of the eye in disease models
The OPTIMEYEZ project aims to enhance a novel multi-contrast optical imaging platform for non-invasive retinal studies, facilitating drug development in neurological diseases while reducing animal use.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High-dimensional electrical stimulation for visual prosthesisThe project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients. | EIC Pathfinder | € 2.105.228 | 2022 | Details |
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disordersThe MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes. | EIC Pathfinder | € 4.428.402 | 2022 | Details |
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitationCorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030. | EIC Accelerator | € 2.500.000 | 2022 | Details |
Advanced Intelligent stimulation device: HAND movement restorationThe AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques. | EIC Pathfinder | € 2.999.834 | 2023 | Details |
A synaptic mechanogenetic technology to repair brain connectivityDeveloping a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy. | EIC Pathfinder | € 3.543.967 | 2023 | Details |
High-dimensional electrical stimulation for visual prosthesis
The project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients.
Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders
The MINIGRAPH project aims to revolutionize neuromodulation therapy for brain diseases by developing minimally invasive, personalized brain implants with closed-loop capabilities and high-resolution graphene microelectrodes.
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation
CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.
Advanced Intelligent stimulation device: HAND movement restoration
The AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques.
A synaptic mechanogenetic technology to repair brain connectivity
Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.