Polymer pRobes fOr a VISual prOsthesis
PROVISO aims to develop flexible polymer electrodes for chronic implantation in the visual cortex to restore rudimentary vision in blind individuals by inducing artificial light perception.
Projectdetails
Introduction
Approximately forty million people across the world are blind, a condition with serious consequences for a person’s autonomy. Restoration of visual function in blind individuals is an important scientific goal with large societal benefits. In a large fraction of blind patients, the connection between the eye and the brain has degenerated so that restoration of a rudimentary form of vision can only be achieved in pathways downstream from the retina, like the visual cortex.
Project Overview
PROVISO tests the feasibility of a new approach for a cortical visual prosthesis by implanting flexible polymer electrodes into the visual cortex that can be stimulated electrically to create a rudimentary form of vision.
Mechanism of Action
Weak electrical currents applied to an electrode in the visual cortex induce an artificial percept of light, called “phosphene.” Multiple phosphenes can be used to build up a shape, just as the lights of a matrix board along the highway generate letters. A promising approach to restore vision involves inserting tiny electrodes into the visual cortex, close to the neurons, so that weak currents result in phosphene perception.
Challenges to Address
There are two problems that need to be solved before the prosthesis can become a treatment for blind individuals:
- The first problem is that the electrodes available for chronic implantation are made of silicon or metal, which causes a tissue response (gliosis) leading to the degradation of the interface with the tissue after several months.
- The second problem is coverage of the visual field. In humans, much of the primary visual cortex (V1) is not located on the surface of the brain, but inside a sulcus, making it difficult to access.
Proposed Solutions
PROVISO will develop methods to implant flexible electrodes that cause little tissue damage and remain functional across longer time scales into the brain. These electrodes will be implanted deep into several brain areas, thereby providing good coverage of the visual field.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 31-12-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Retinal Mesh OptoelectronicsThe project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Non-invasive patterned electrical neurostimulation of the retinaThis project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases. | ERC Advanced... | € 2.500.000 | 2023 | Details |
A sonogenetic brain-machine interface for neurosciences and visual restorationDeveloping a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders. | ERC Synergy ... | € 7.817.939 | 2024 | Details |
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathwayDevelop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions. | ERC Starting... | € 1.499.213 | 2023 | Details |
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory DisordersThis project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit. | ERC Starting... | € 1.499.625 | 2022 | Details |
Retinal Mesh Optoelectronics
The project aims to develop a novel Retinal Mesh Optoelectronics using quantum dots and nanowires for flexible, high-density implants to restore vision in patients with photoreceptor degeneration.
Non-invasive patterned electrical neurostimulation of the retina
This project aims to develop non-invasive trans-orbital stimulation techniques and bi-directional interfaces for retinal neurostimulation to enhance artificial vision in patients with retinal degenerative diseases.
A sonogenetic brain-machine interface for neurosciences and visual restoration
Developing a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders.
Soft optoelectronics and ion-based circuits for diagnostics and closed-loop neuromodulation of the auditory pathway
Develop a fully implantable, biocompatible electro-optical neurostimulation system using ion gated transistors and OLEDs to enhance neural signal acquisition and treatment of sensory dysfunctions.
Neuroprosthetic Modulation of Large-Scale Brain Networks for Treating Memory Disorders
This project aims to develop a neuromodulation framework using a neuroprosthesis to enhance learning and memory by manipulating neural oscillations in the hippocampus-prefrontal cortex circuit.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
High-dimensional electrical stimulation for visual prosthesisThe project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients. | EIC Pathfinder | € 2.105.228 | 2022 | Details |
Near natural hearing restoration through waveguide-based optical cochlear implantsOptoWavePro aims to create a safe and effective optical cochlear implant for restoring hearing in profoundly impaired individuals using advanced optogenetic techniques and innovative engineering. | EIC Transition | € 2.499.983 | 2024 | Details |
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSISDeveloping fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems. | EIC Transition | € 2.490.802 | 2022 | Details |
Advanced Intelligent stimulation device: HAND movement restorationThe AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques. | EIC Pathfinder | € 2.999.834 | 2023 | Details |
Auto-adaptive Neuromorphic Brain Machine Interface: toward fully embedded neuroprostheticsThe NEMO BMI project aims to develop an assistance-free, user-friendly neuroprosthetic system that utilizes brain signals for limb control, enhancing usability and portability through innovative technologies. | EIC Pathfinder | € 3.784.703 | 2022 | Details |
High-dimensional electrical stimulation for visual prosthesis
The project aims to enhance visual prostheses by developing sophisticated stimulation protocols for existing microelectrodes, achieving a 20X improvement in spatial resolution to restore vision in blind patients.
Near natural hearing restoration through waveguide-based optical cochlear implants
OptoWavePro aims to create a safe and effective optical cochlear implant for restoring hearing in profoundly impaired individuals using advanced optogenetic techniques and innovative engineering.
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSIS
Developing fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems.
Advanced Intelligent stimulation device: HAND movement restoration
The AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques.
Auto-adaptive Neuromorphic Brain Machine Interface: toward fully embedded neuroprosthetics
The NEMO BMI project aims to develop an assistance-free, user-friendly neuroprosthetic system that utilizes brain signals for limb control, enhancing usability and portability through innovative technologies.