Ferrotransmons and Ferrogatemons for Scalable Superconducting Quantum Computers
The project aims to develop novel superconducting qubit designs that eliminate flux-bias lines, enhancing scalability and performance in quantum processors through innovative junction integration.
Projectdetails
Introduction
We propose alternative approaches to superconducting qubit technology. State-of-the-art implementations require flux-bias lines to tune the qubit frequency.
Challenges with Current Technology
These lines are controlled with currents which can damage qubit performance by inducing undesirable magnetic fields. This is detrimental to qubit performance and presents a severe bottleneck for scalability, as these lines are associated with significant heat dissipation.
Proposed Solutions
In this project, we advance two novel superconducting qubit designs capable of overcoming this challenge by eliminating the need for flux lines. This will involve the investigation of SIsFS junctions and their integration into quantum processors.
Innovation Tracks
- One innovation track will implement SIsFS junctions in a transmon geometry (ferrotransmons).
- The other will hybridize gatemons and -junction to deliver a ferrogatemon.
Collaboration
Three of Europe's leading quantum startups will integrate these alternative qubit types into prototype full-stack systems to test the implications of these novel approaches on scalability and performance quality.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.948.125 |
Totale projectbegroting | € 3.948.125 |
Tijdlijn
Startdatum | 1-11-2023 |
Einddatum | 31-10-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO IIpenvoerder
- KOBENHAVNS UNIVERSITET
- QUANTWARE B.V.
- QBLOX BV
- QUANTROLOX FINLAND OY
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum bits with Kitaev TransmonsThis project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing. | EIC Pathfinder | € 4.749.963 | 2023 | Details |
HIGH-TC JOSEPHSON NEURONS AND SYNAPSES: TOWARDS ULTRAFAST AND ENERGY EFFICIENT SUPERCONDUCTING NEUROMORPHIC COMPUTINGThe project aims to develop high-temperature Josephson junctions as artificial neurons and synapses to revolutionize neuromorphic computing, enhancing speed, efficiency, and capabilities for diverse applications. | EIC Pathfinder | € 3.438.122 | 2024 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Entangled Flying Electron Quantum TechnologyELEQUANT aims to revolutionize quantum technology by developing high-fidelity flying charge qubits using electronic wavepackets in novel semiconductor materials for enhanced scalability and connectivity. | EIC Pathfinder | € 3.495.061 | 2025 | Details |
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICONThis project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing. | EIC Pathfinder | € 3.235.322 | 2025 | Details |
Quantum bits with Kitaev Transmons
This project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing.
HIGH-TC JOSEPHSON NEURONS AND SYNAPSES: TOWARDS ULTRAFAST AND ENERGY EFFICIENT SUPERCONDUCTING NEUROMORPHIC COMPUTING
The project aims to develop high-temperature Josephson junctions as artificial neurons and synapses to revolutionize neuromorphic computing, enhancing speed, efficiency, and capabilities for diverse applications.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Entangled Flying Electron Quantum Technology
ELEQUANT aims to revolutionize quantum technology by developing high-fidelity flying charge qubits using electronic wavepackets in novel semiconductor materials for enhanced scalability and connectivity.
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICON
This project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC Advanced... | € 2.498.759 | 2022 | Details |
Novel Approaches to Error Detection and Protection with Superconducting QubitsThe project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations. | ERC Starting... | € 1.454.635 | 2023 | Details |
Germanium quantum processors: more, robust, availableGroove aims to develop scalable germanium-based qubits for quantum computing, achieving 16 qubits for cloud access while preparing a start-up to meet market demands and advance the EU's quantum ambitions. | EIC Transition | € 2.499.999 | 2023 | Details |
Millimetre-Wave Superconducting Quantum CircuitsThe project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges. | ERC Advanced... | € 2.736.708 | 2022 | Details |
SuPErConducTing Radio-frequency switch for qUantuM technologiesThe project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation. | EIC Transition | € 2.499.222 | 2022 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Novel Approaches to Error Detection and Protection with Superconducting Qubits
The project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations.
Germanium quantum processors: more, robust, available
Groove aims to develop scalable germanium-based qubits for quantum computing, achieving 16 qubits for cloud access while preparing a start-up to meet market demands and advance the EU's quantum ambitions.
Millimetre-Wave Superconducting Quantum Circuits
The project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges.
SuPErConducTing Radio-frequency switch for qUantuM technologies
The project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation.