Superconducting qubits with 1 second coherence time using rotation codes
This project aims to develop a high-coherence superconducting cavity qubit to enhance quantum computing reliability and efficiency through innovative error correction and design strategies.
Projectdetails
Introduction
Quantum computers use highly entangled qubits to achieve their exceptional computational power. However, the qubits also easily entangle with their environment, leading to errors. Future quantum computers can be protected against such errors by encoding each logical qubit redundantly in thousands of physical qubits. This daunting overhead can be reduced exponentially by improving the quality of the physical qubits.
Cavity Qubits
We can also replace the two-level physical qubits with cavities, which are described by continuous variables. This built-in redundancy can further reduce the overhead for fault-tolerant quantum computation.
Proposal Overview
In this proposal, I aim to develop a qubit based on superconducting cavities with a coherence time of 1 second - three orders of magnitude higher than the current state of the art. I will achieve this goal by tackling the problem of errors in quantum computers on three fronts:
- Developing a qubit with suppressed intrinsic loss mechanisms by harnessing recent developments in cavities for particle accelerators.
- Using quantum control to mitigate the effect of dominant error mechanisms.
- Developing and implementing bosonic rotation codes, a novel blueprint for quantum error correction tailored to the error structure of the cavity qubit. These codes are unique in that they treat photon loss errors and phase noise errors on equal footing.
Design Considerations
My proposal requires a radical rethinking of the cavity design, its interaction with quantum circuits, and how quantum information is encoded and manipulated. It combines advances in quantum information science, superconductivity, and materials science.
Broader Impact
Beyond providing a novel approach to quantum computing, the proposal will impact a broad range of fields ranging from quantum-enhanced sensing to the simulation of photochemical reactions.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.275.797 |
Totale projectbegroting | € 2.275.797 |
Tijdlijn
Startdatum | 1-8-2022 |
Einddatum | 31-7-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- WEIZMANN INSTITUTE OF SCIENCEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel Approaches to Error Detection and Protection with Superconducting QubitsThe project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations. | ERC Starting... | € 1.454.635 | 2023 | Details |
High-impedance Superconducting Circuits Enabling Fault-tolerant Quantum Computing by Wideband Microwave ControlThe project aims to develop autonomous error-corrected qubits using GKP states in high-impedance superconducting circuits to enhance coherence and enable fault-tolerant quantum computing. | ERC Starting... | € 2.081.275 | 2022 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC Advanced... | € 2.498.759 | 2022 | Details |
Millimetre-Wave Superconducting Quantum CircuitsThe project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges. | ERC Advanced... | € 2.736.708 | 2022 | Details |
Atomic scale coherent manipulation of the electron spin in semiconductorsOneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications. | ERC Starting... | € 1.913.122 | 2024 | Details |
Novel Approaches to Error Detection and Protection with Superconducting Qubits
The project aims to enhance superconducting quantum computing by developing novel qubit coupling mechanisms and high-coherence protected qubit encodings for improved error correction and quantum operations.
High-impedance Superconducting Circuits Enabling Fault-tolerant Quantum Computing by Wideband Microwave Control
The project aims to develop autonomous error-corrected qubits using GKP states in high-impedance superconducting circuits to enhance coherence and enable fault-tolerant quantum computing.
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Millimetre-Wave Superconducting Quantum Circuits
The project aims to develop and test superconducting qubits operating at 100 GHz to enhance quantum coherence, reduce noise, and enable faster quantum computing while addressing associated challenges.
Atomic scale coherent manipulation of the electron spin in semiconductors
OneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum bits with Kitaev TransmonsThis project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing. | EIC Pathfinder | € 4.749.963 | 2023 | Details |
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGEThe QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms. | EIC Pathfinder | € 3.420.513 | 2023 | Details |
Efficient Verification of Quantum computing architectures with BosonsVeriQuB aims to develop a novel verification method for bosonic quantum computing architectures using continuous-variable measurements to enable scalable and fault-tolerant systems. | EIC Pathfinder | € 3.983.635 | 2023 | Details |
Quantum reservoir computing for efficient signal processingThe QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains. | EIC Pathfinder | € 2.522.411 | 2024 | Details |
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with LightCIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications. | EIC Pathfinder | € 2.548.532 | 2024 | Details |
Quantum bits with Kitaev Transmons
This project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing.
SCALABLE MULTI-CHIP QUANTUM ARCHITECTURES ENABLED BY CRYOGENIC WIRELESS / QUANTUM -COHERENT NETWORK-IN PACKAGE
The QUADRATURE project aims to develop scalable quantum computing architectures with distributed quantum cores and integrated wireless links to enhance performance and support diverse quantum algorithms.
Efficient Verification of Quantum computing architectures with Bosons
VeriQuB aims to develop a novel verification method for bosonic quantum computing architectures using continuous-variable measurements to enable scalable and fault-tolerant systems.
Quantum reservoir computing for efficient signal processing
The QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains.
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light
CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.