Paradoxical activation of oncogenic signaling as a cancer treatment strategy.
This project aims to selectively kill cancer cells by hyperactivating oncogenic signaling while disrupting stress responses, using multi-omics to identify vulnerabilities and effective combination therapies.
Projectdetails
Introduction
Cancer cell homeostasis requires a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress-response programs to counteract the inherent toxicity of such aberrant signaling. Indeed, emerging evidence suggests that hyperactivated oncogenic signaling can also be toxic to cancer cells, indicating that cancer cells select optimal levels of oncogenic signaling rather than maximal levels.
Proposed Treatment Approach
I propose here a fundamentally different approach to the treatment of cancer, based on deliberate hyperactivation of oncogenic signaling, combined with perturbation of the activated stress responses to selectively kill cancer cells.
Drug Utilization
We will use drugs that further activate oncogenic signaling in cancer cells, including:
- Protein phosphatase 2A (PP2A) inhibitors
- GSK3 inhibitors
- PKC activators
- DUSP inhibitors
Methodology
We will study the associated toxicities using single-cell omics technologies. We will then use CRISPR and compound screens to identify the vulnerabilities of such drug-treated cells. This will identify effective combination therapies using this paradoxical approach.
Proof of Concept
We have delivered initial proof of concept for this notion by demonstrating that hyperactivation of oncogenic signaling in colon cancer by small molecule inhibition of PP2A, combined with inhibition of the mitotic kinase WEE1, results in dramatic anti-tumor responses in vivo.
Resistance Mechanism
Most strikingly, we found that cancer cells develop resistance to this therapy through selective downregulation of oncogenic signaling to evade the stress imposed by hyperactivation of oncogenic signaling. Consequently, resistance to this hyperactivation therapy was associated with both reduced oncogenic signaling and oncogenic traits in vivo.
Research Goals
Here, we aim to:
- Understand and exploit toxicities associated with paradoxical activation of oncogenic signaling using multi-omics technologies.
- Study how cancer cells can develop tumor suppressive drug resistance.
- Address the effects of this type of therapy on pre-malignant lesions.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 30-6-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUISpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
What doesn’t kill you: primed and adaptive mechanisms of treatment resistance in ovarian cancerThis project aims to develop a novel methodology to identify and target pre-existing resistant cell states in ovarian cancer, enhancing therapy effectiveness through sequential drug combinations. | ERC Consolid... | € 1.999.754 | 2024 | Details |
Cancer cell plasticity on targeted therapyThis project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes. | ERC Consolid... | € 2.000.000 | 2022 | Details |
Unlocking a T cell-mediated Immune response in therapy-challenged TumorsUnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors. | ERC Consolid... | € 2.000.000 | 2024 | Details |
From understanding to rational design of next-generation cancer therapiesThe project aims to enhance cancer treatment efficacy by combining immunotherapy with ultra-low dose therapies to exploit sublethal damage in tumor cells, improving tolerability and clinical outcomes. | ERC Advanced... | € 2.499.893 | 2022 | Details |
Targeting the undruggable: Leveraging neomorphic DNA-binding preferences of chimeric fusion oncogenes to promote cancer suicideThis project aims to develop a novel viral vector strategy that leverages oncogenic transcription factors to selectively induce cancer cell suicide in aggressive tumors like Ewing sarcoma. | ERC Consolid... | € 1.992.235 | 2024 | Details |
What doesn’t kill you: primed and adaptive mechanisms of treatment resistance in ovarian cancer
This project aims to develop a novel methodology to identify and target pre-existing resistant cell states in ovarian cancer, enhancing therapy effectiveness through sequential drug combinations.
Cancer cell plasticity on targeted therapy
This project aims to develop innovative cancer therapies by analyzing tumor heterogeneity and targeting drug-tolerant persister cells to prevent resistance and improve patient outcomes.
Unlocking a T cell-mediated Immune response in therapy-challenged Tumors
UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.
From understanding to rational design of next-generation cancer therapies
The project aims to enhance cancer treatment efficacy by combining immunotherapy with ultra-low dose therapies to exploit sublethal damage in tumor cells, improving tolerability and clinical outcomes.
Targeting the undruggable: Leveraging neomorphic DNA-binding preferences of chimeric fusion oncogenes to promote cancer suicide
This project aims to develop a novel viral vector strategy that leverages oncogenic transcription factors to selectively induce cancer cell suicide in aggressive tumors like Ewing sarcoma.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.