RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURE
RESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance.
Projectdetails
Introduction
Computing with light using integrated optics has seen huge progress over the last 3-4 years in multiple fields such as neuromorphic computing, quantum computing, and on-chip data storage. This has created a vast ecosystem that relies on high-speed reconfigurations of nanophotonic circuits (such as their use as synapses or routing applications) and ultrafast yet high-resolution, low-power photodetection.
Current Limitations
Currently, it is impossible to combine all these functionalities into an integrated platform that fits onto a single chip.
Project Overview
In RESPITE, by utilizing our newly invented superconducting Joule switches as neurons, multi-level phase change memory elements as synaptic weights, and superconducting single-photon detector arrays as retina, we will demonstrate a novel platform which combines vision and cognition on a single chip.
Performance Features
This new platform will allow in-sensor neuromorphic computing with unprecedented performance levels. The platform will have:
- AttoJoule switching power consumption
- Sub-nanosecond latency
- High compactness (3000 neurons and >100K synapses on <5 mm²)
Advantages
Unlike other superconducting neuromorphic technologies, our new platform will be:
- Scalable
- Easy to fabricate
- Compatible with low-cost cryostats
- Compatible with high-Tc superconductors
- Suitable for quantum applications
- Applicable for on-chip learning architectures
This makes it a game changer for a wide range of users and disciplines.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.455.823 |
Totale projectbegroting | € 2.455.823 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 28-2-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- SINGLE QUANTUM BVpenvoerder
- TECHNISCHE UNIVERSITEIT DELFT
- UNIVERSITEIT GENT
- RIJKSUNIVERSITEIT GRONINGEN
- TURKIYE BILIMSEL VE TEKNOLOJIK ARASTIRMA KURUMU
- FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
- THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hybrid electronic-photonic architectures for brain-inspired computingHYBRAIN aims to develop a brain-inspired hybrid architecture combining integrated photonics and unconventional electronics for ultrafast, energy-efficient edge AI inference. | EIC Pathfinder | € 1.672.528 | 2022 | Details |
Neuromorphic computing Enabled by Heavily doped semiconductor OpticsNEHO aims to create a novel photonic integrated circuit for ultrafast, low-energy neuromorphic processing using nonlinear photon-plasmon technology to enhance machine learning capabilities. | EIC Pathfinder | € 2.982.184 | 2023 | Details |
Nano electro-optomechanical programmable integrated circuitsNEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing. | EIC Pathfinder | € 2.999.924 | 2023 | Details |
SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSINGSPIKEPro aims to develop an integrated neuromorphic chip combining electrical and photonic neurons to create efficient, high-speed spiking neural networks for diverse applications. | EIC Pathfinder | € 1.973.038 | 2024 | Details |
HIGH-TC JOSEPHSON NEURONS AND SYNAPSES: TOWARDS ULTRAFAST AND ENERGY EFFICIENT SUPERCONDUCTING NEUROMORPHIC COMPUTINGThe project aims to develop high-temperature Josephson junctions as artificial neurons and synapses to revolutionize neuromorphic computing, enhancing speed, efficiency, and capabilities for diverse applications. | EIC Pathfinder | € 3.438.122 | 2024 | Details |
Hybrid electronic-photonic architectures for brain-inspired computing
HYBRAIN aims to develop a brain-inspired hybrid architecture combining integrated photonics and unconventional electronics for ultrafast, energy-efficient edge AI inference.
Neuromorphic computing Enabled by Heavily doped semiconductor Optics
NEHO aims to create a novel photonic integrated circuit for ultrafast, low-energy neuromorphic processing using nonlinear photon-plasmon technology to enhance machine learning capabilities.
Nano electro-optomechanical programmable integrated circuits
NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.
SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSING
SPIKEPro aims to develop an integrated neuromorphic chip combining electrical and photonic neurons to create efficient, high-speed spiking neural networks for diverse applications.
HIGH-TC JOSEPHSON NEURONS AND SYNAPSES: TOWARDS ULTRAFAST AND ENERGY EFFICIENT SUPERCONDUCTING NEUROMORPHIC COMPUTING
The project aims to develop high-temperature Josephson junctions as artificial neurons and synapses to revolutionize neuromorphic computing, enhancing speed, efficiency, and capabilities for diverse applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Rapid Programmable Photonic Integrated CircuitsThis project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency. | ERC Proof of... | € 150.000 | 2023 | Details |
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processorThe project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications. | ERC Starting... | € 1.499.325 | 2023 | Details |
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal ProcessingATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies. | ERC Synergy ... | € 13.999.999 | 2025 | Details |
Lithium Niobate Quantum systemsThis project aims to develop integrated Lithium Niobate Quantum systems (LiNQs) to create a comprehensive platform for scalable quantum photonic circuits, enhancing Europe's quantum technology capabilities. | ERC Starting... | € 2.499.381 | 2022 | Details |
Optoelectronic and all-optical hyperspin machines for large-scale computingHYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems. | ERC Advanced... | € 2.490.000 | 2025 | Details |
Rapid Programmable Photonic Integrated Circuits
This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.
Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor
The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.
Active Hybrid Photonic Integrated Circuits for Ultra-Efficient Electro-Optic Conversion and Signal Processing
ATHENS aims to revolutionize electro-optic conversion in photonic integrated circuits by developing advanced materials and integration techniques for enhanced performance in communications and quantum technologies.
Lithium Niobate Quantum systems
This project aims to develop integrated Lithium Niobate Quantum systems (LiNQs) to create a comprehensive platform for scalable quantum photonic circuits, enhancing Europe's quantum technology capabilities.
Optoelectronic and all-optical hyperspin machines for large-scale computing
HYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems.