Large-scale Multicore Smart Photonics: Using advanced design and configuration protocols to develop the largest-scale programmable photonic processor
The project aims to develop a large-scale multicore programmable photonic processor to enhance scalability and performance in integrated photonics for complex neuromorphic computing applications.
Projectdetails
Introduction
Emerging communications and computing fields are pushing the limits of integrated electronics, demanding growing performance and requiring a symbiotic collaboration with integrated photonics. The development of multipurpose programmable photonic integrated circuits promises cost-effective mass production and the system versatility required in novel dynamic processing scenarios. However, their scalability is a major challenge constrained both by hardware and software.
Challenges and Solutions
To unleash the potential of programmable photonics, it is essential to create novel circuits and components as well as to redefine its fundamentals. Multicore architectures are a potential unexplored solution offering scalability, multitasking, and parallelization, but key technology enablers are required to transition to practical large-scale applications.
Project Aim
The aim of this project is to develop the theoretical and technological fundamentals of programmable integrated photonics to unlock their limited scale by developing the first large-scale multicore programmable photonic processor and its application as a complex-valued neuromorphic computer.
Methodology
To achieve this aim, we will:
- Identify the main scalability limits, advanced photonic circuit architectures, and component development solutions for large-scale programmable photonic circuits.
- Develop a functional single-core programmable photonic processor with more than 2500 phase actuators.
- Demonstrate large-scale complex-valued coherent neuromorphic circuits.
- Develop a functional 4-core programmable photonic processor with more than 10,000 actuators and demonstrate its experimental application to photonic neuromorphic systems.
Impact
LS-PHOTONICS will have a major impact on high-density integrated photonics circuits by facilitating a new paradigm of general-purpose/application, advanced photonic computing, and ready-to-use and flexible devices that will extend the penetration of advanced photonics technology into seamless areas of application.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.325 |
Totale projectbegroting | € 1.499.325 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- IPRONICS PROGRAMMABLE PHOTONICS,SLpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Three dimensional INtegrated PhotonIcS to RevolutionizE deep LearningThis project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications. | ERC Consolid... | € 1.998.918 | 2022 | Details |
Rapid Programmable Photonic Integrated CircuitsThis project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency. | ERC Proof of... | € 150.000 | 2023 | Details |
Optoelectronic and all-optical hyperspin machines for large-scale computingHYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems. | ERC Advanced... | € 2.490.000 | 2025 | Details |
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit EngineeringLIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology. | ERC Proof of... | € 150.000 | 2022 | Details |
3D integrated photonic nanostructures with Giant optical nonlinearity3DnanoGiant aims to develop innovative nonlinear photonic materials using liquid crystals for efficient all-optical signal processing in integrated photonic devices. | ERC Starting... | € 1.500.000 | 2025 | Details |
Three dimensional INtegrated PhotonIcS to RevolutionizE deep Learning
This project aims to develop advanced photonic neural network processors to significantly enhance computational efficiency and scalability, revolutionizing AI hardware and applications.
Rapid Programmable Photonic Integrated Circuits
This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.
Optoelectronic and all-optical hyperspin machines for large-scale computing
HYPERSPIM develops ultrafast photonic machines for large-scale combinatorial optimization, enhancing efficiency in classical and quantum computing for complex real-world problems.
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering
LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.
3D integrated photonic nanostructures with Giant optical nonlinearity
3DnanoGiant aims to develop innovative nonlinear photonic materials using liquid crystals for efficient all-optical signal processing in integrated photonic devices.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano electro-optomechanical programmable integrated circuitsNEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing. | EIC Pathfinder | € 2.999.924 | 2023 | Details |
RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURERESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance. | EIC Pathfinder | € 2.455.823 | 2023 | Details |
SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSINGSPIKEPro aims to develop an integrated neuromorphic chip combining electrical and photonic neurons to create efficient, high-speed spiking neural networks for diverse applications. | EIC Pathfinder | € 1.973.038 | 2024 | Details |
Digital optical computing platform for neural networksDOLORES aims to develop a digital optical neural network processor to overcome current optical computing limitations, revolutionizing AI and deep learning applications across various sectors. | EIC Pathfinder | € 3.015.883 | 2024 | Details |
Innovating iN Smart Programmable IntegRatEd photonicsThe INSPIRE project aims to develop and demonstrate programmable photonic processors (FPPGAs) for enhanced computing performance and efficiency, targeting TRL5/6 readiness with three innovative prototypes. | EIC Transition | € 2.453.292 | 2022 | Details |
Nano electro-optomechanical programmable integrated circuits
NEUROPIC aims to develop a programmable photonic chip architecture for diverse applications, leveraging nanoelectromechanical technologies to enhance efficiency and enable neuromorphic computing.
RECONFIGURABLE SUPERCONDUTING AND PHOTONIC TECHNOLOGIES OF THE FUTURE
RESPITE aims to develop a compact, scalable neuromorphic computing platform integrating vision and cognition on a single chip using superconducting technologies for ultra-low power and high performance.
SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSING
SPIKEPro aims to develop an integrated neuromorphic chip combining electrical and photonic neurons to create efficient, high-speed spiking neural networks for diverse applications.
Digital optical computing platform for neural networks
DOLORES aims to develop a digital optical neural network processor to overcome current optical computing limitations, revolutionizing AI and deep learning applications across various sectors.
Innovating iN Smart Programmable IntegRatEd photonics
The INSPIRE project aims to develop and demonstrate programmable photonic processors (FPPGAs) for enhanced computing performance and efficiency, targeting TRL5/6 readiness with three innovative prototypes.