Lithium Niobate Quantum systems
This project aims to develop integrated Lithium Niobate Quantum systems (LiNQs) to create a comprehensive platform for scalable quantum photonic circuits, enhancing Europe's quantum technology capabilities.
Projectdetails
Introduction
Quantum technologies are expected to have a transformative impact by exploiting fundamental quantum mechanical effects for technological applications such as quantum computation, quantum simulation, quantum communication, and quantum sensing. Photons are the only reliable qubit for quantum information transmission, making them an essential resource for quantum technologies.
Integration Challenges
However, quantum photonics will only meet its expectation as a groundbreaking technology when integrated in a scalable fashion. The solution lies in quantum photonic integrated circuits where photons are used to encode and process quantum information on-chip, offering scalable quantum information processing units.
Current State of Research
Currently, different integration platforms are investigated with a selection of building blocks available. However, no platform has shown a comprehensive toolbox combining all functionalities on a single chip.
Project Goals
In this project, I will demonstrate that the thin film lithium niobate on insulator platform can simultaneously link all quantum photonics building blocks on a single platform, resulting in fully integrated quantum photonic integrated circuits.
Development of LiNQs
I will develop integrated Lithium Niobate Quantum systems (LiNQs) showcasing the generation, manipulation, and analysis of photonic qubits. This will result in the first compatible integration platform hosting:
- Semiconductor quantum emitters
- Quantum memories based on rare-earth ions
- Cryogenic electronics
- Superconducting single-photon detectors
Together with the outstanding properties of CMOS-compatible lithium niobate on insulator: low-loss circuits and fast modulators.
Contribution to the Community
By developing all required building blocks and linking them to scalable systems, I will provide the quantum technology community a single integration platform for all quantum photonics applications. LiNQs will lay the foundation for Europe's forefront position in a future photonics-driven quantum technology industry.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.381 |
Totale projectbegroting | € 2.499.381 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITAET PADERBORNpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Integrated photonic circuit fabrication by femtosecond laser writing for quantum informationThe PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion. | ERC Proof of... | € 150.000 | 2022 | Details |
Monolithic Silicon Quantum Communication CircuitryMOSQITO aims to simplify quantum key distribution using a novel silicon integration approach, enabling practical QKD applications in telecommunications and addressing cost and size challenges. | ERC Proof of... | € 150.000 | 2024 | Details |
Spins Interfaced with Light for Quantum Silicon technologiesThe SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies. | ERC Starting... | € 1.500.000 | 2022 | Details |
Optical Entanglement of Nuclear Spins in SiliconOpENSpinS aims to enhance silicon-based quantum information processing by using erbium nuclear spins as qubits, enabling long-distance entanglement and scalable quantum networks through advanced photonic integration. | ERC Consolid... | € 1.984.375 | 2025 | Details |
Photonic Quantum Technologies with Strain-Free Artificial AtomsThis project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies. | ERC Starting... | € 1.500.000 | 2023 | Details |
Integrated photonic circuit fabrication by femtosecond laser writing for quantum information
The PhotonFAB project aims to enhance the production of integrated photonic devices for quantum applications using femtosecond laser writing, targeting commercial viability and market expansion.
Monolithic Silicon Quantum Communication Circuitry
MOSQITO aims to simplify quantum key distribution using a novel silicon integration approach, enabling practical QKD applications in telecommunications and addressing cost and size challenges.
Spins Interfaced with Light for Quantum Silicon technologies
The SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies.
Optical Entanglement of Nuclear Spins in Silicon
OpENSpinS aims to enhance silicon-based quantum information processing by using erbium nuclear spins as qubits, enabling long-distance entanglement and scalable quantum networks through advanced photonic integration.
Photonic Quantum Technologies with Strain-Free Artificial Atoms
This project aims to develop a scalable platform using gallium arsenide quantum dots to produce highly entangled photon states, enhancing quantum communication and simulation technologies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ExpLoring Lithium tantalate on Insulator PhoTonic Integrated CircuitsThe ELLIPTIC project aims to advance nonlinear integrated photonics using LTOI to overcome current limitations and enable diverse applications in communications and quantum technologies. | EIC Pathfinder | € 2.997.273 | 2025 | Details |
Scalable Entangled-Photon based Optical Quantum ComputersThe project aims to develop MOSAIQ, a modular photonic quantum computing platform utilizing efficient single photon qubits for scalable quantum computation. | EIC Accelerator | € 2.499.000 | 2023 | Details |
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT NetworksQOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets. | EIC Pathfinder | € 3.481.857 | 2025 | Details |
Integrated Quantum Network Node using Chip-based Qubit DevicesDelft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity. | EIC Transition | € 2.499.999 | 2025 | Details |
Single-Photon Light Sources for Quantum TechnologiesQTOOL aims to fine-tune and demonstrate key single-photon products to enhance research in Photonic Quantum Technologies, making it faster, cheaper, and more effective. | EIC Accelerator | € 2.490.742 | 2022 | Details |
ExpLoring Lithium tantalate on Insulator PhoTonic Integrated Circuits
The ELLIPTIC project aims to advance nonlinear integrated photonics using LTOI to overcome current limitations and enable diverse applications in communications and quantum technologies.
Scalable Entangled-Photon based Optical Quantum Computers
The project aims to develop MOSAIQ, a modular photonic quantum computing platform utilizing efficient single photon qubits for scalable quantum computation.
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT Networks
QOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets.
Integrated Quantum Network Node using Chip-based Qubit Devices
Delft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity.
Single-Photon Light Sources for Quantum Technologies
QTOOL aims to fine-tune and demonstrate key single-photon products to enhance research in Photonic Quantum Technologies, making it faster, cheaper, and more effective.