Mapping the brain-spinal cord interaction towards understanding and treatment of movement disorders
Move2Treat aims to develop a novel bi-directional brain-spinal cord interface to enhance understanding and treatment of movement disorders through advanced neuronal circuit mapping.
Projectdetails
Introduction
Movement is one of the most important activities in our everyday life. It is an essential element for maintaining overall health and well-being, with more than 1 billion people globally suffering from a neurological disease that directly affects their movement. Each year, more than 1.5 million people experience a stroke in the EU alone, leading to death, paralysis, or some kind of disability. This is a significant burden on healthcare systems with no cure.
Research Questions
We must address the questions:
- How do we move?
- What is the underlying physical mechanism of the brain-spinal cord interaction that orchestrates the generation of movement?
To be able to answer those, a high-performance bi-directional interface is required.
Project Overview
Move2Treat explores disruptive science by developing a new brain-spinal cord interface to investigate the associated neuronal circuits. In fact, Move2Treat has 3 distinct breakthroughs:
- A novel theory on movement generation by rotating ensembles validating the neuronal population activity across central brain regions and the spinal cord.
- A bi-directional soft-fiber platform as a neural interface to the brain and spinal cord in freely behaving species.
- Validation of theory (1) and neural interface (2) in the disease models.
Technological Advancements
The developed theory and implant enable the “next-generation pacemaker of the nervous system” based on the first complete, minimally invasive, wireless, biocompatible, and soft multifunctional fiber-based neural interface. This interface maps the brain-spinal cord activity by simultaneous stimulation/recording in vivo and real-time with high spatial and temporal resolution.
Conclusion
Move2Treat is a European approach to establish technological sovereignty, delivering the “next-generation precision sensing for neurological science.”
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.996.048 |
Totale projectbegroting | € 2.996.048 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 30-6-2027 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- DANMARKS TEKNISKE UNIVERSITETpenvoerder
- TECHNOLOGIKO PANEPISTIMIO KYPROU
- ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
- KOBENHAVNS UNIVERSITET
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Restoring movement lost to strokeThis project aims to develop a brain-spine interface to restore hand and arm movements in subcortical stroke survivors, potentially becoming the first effective treatment for their paralysis. | EIC Pathfinder | € 2.995.448 | 2025 | Details |
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cordPiezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy. | EIC Pathfinder | € 3.537.120 | 2023 | Details |
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learningCROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy. | EIC Pathfinder | € 4.034.074 | 2022 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
A synaptic mechanogenetic technology to repair brain connectivityDeveloping a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy. | EIC Pathfinder | € 3.543.967 | 2023 | Details |
Restoring movement lost to stroke
This project aims to develop a brain-spine interface to restore hand and arm movements in subcortical stroke survivors, potentially becoming the first effective treatment for their paralysis.
Piezo-driven theramesh: A revolutionary multifaceted actuator to repair the injured spinal cord
Piezo4Spine aims to create a groundbreaking 3D bioprinted mesh therapy for spinal cord injury that enhances neural repair through targeted mechanotransduction and gene therapy.
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning
CROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
A synaptic mechanogenetic technology to repair brain connectivity
Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSISDeveloping fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems. | EIC Transition | € 2.490.802 | 2022 | Details |
A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Regain Motor FunctionThis project aims to develop a bidirectional neural interface that enhances motor function in paralyzed individuals by precisely mapping and engaging spinal motor neurons through advanced sensing and feedback methods. | ERC Starting... | € 1.495.271 | 2024 | Details |
Bidirectional neuromuscular interface based on associative plasticity for stroke therapy during activities of daily livingThe neubond device offers autonomous, wearable therapy for stroke recovery, enhancing motor function and neuroplasticity through real-time muscle stimulation during daily activities. | ERC Proof of... | € 150.000 | 2025 | Details |
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitationCorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030. | EIC Accelerator | € 2.500.000 | 2022 | Details |
SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivoSMARTSENS aims to revolutionize neuro-rehabilitation by providing a wearable, non-invasive system for continuous monitoring of neuromuscular parameters during daily activities. | ERC Proof of... | € 150.000 | 2023 | Details |
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSIS
Developing fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems.
A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Regain Motor Function
This project aims to develop a bidirectional neural interface that enhances motor function in paralyzed individuals by precisely mapping and engaging spinal motor neurons through advanced sensing and feedback methods.
Bidirectional neuromuscular interface based on associative plasticity for stroke therapy during activities of daily living
The neubond device offers autonomous, wearable therapy for stroke recovery, enhancing motor function and neuroplasticity through real-time muscle stimulation during daily activities.
Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation
CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.
SMARTSENS: Smart wear for sensing the neuromusculoskeletal system during human movement in vivo
SMARTSENS aims to revolutionize neuro-rehabilitation by providing a wearable, non-invasive system for continuous monitoring of neuromuscular parameters during daily activities.