Germanium quantum processors: more, robust, available
Groove aims to develop scalable germanium-based qubits for quantum computing, achieving 16 qubits for cloud access while preparing a start-up to meet market demands and advance the EU's quantum ambitions.
Projectdetails
Introduction
Quantum computers promise to enable a computing power far beyond the capabilities of modern-day classical and supercomputers and are expected to revolutionise research in, among others, chemistry, medicine, and materials research. However, a quantum computer capable of solving useful problems will require millions of high-quality quantum bits (qubits) working together.
Current Qubit Platforms
Currently, there are several qubit hardware platforms that are being studied and commercialised. This commercialisation mainly focuses on:
- Superconducting transmon qubits
- Photonic qubits
- Qubits made with trapped ions
Although these platforms enabled the first breakthroughs in quantum computing research and are developing steadily, the large size of the qubit systems may hamper their scaling towards the millions of qubits required for useful quantum computations.
Project Overview
Groove will overcome the scaling problem that most quantum bit platforms will face by focusing on the semiconductor germanium platform. Germanium qubits stand out due to:
- A small footprint
- Well-defined, long-lived qubit states
- Compatibility with semiconductor manufacturing
This is highly promising for scalability.
Development Goals
We will develop high-yield, robust qubits and scale up to 16 qubits, which we will make available in the cloud. In parallel, we will write a business plan and prepare the launch of a start-up company already during the grant period, given the strong commercial potential of this technology.
Contribution to the EU Ambition
Our project will greatly contribute to the EU ambition of being in the forefront of the second quantum revolution by enabling a revolutionary technology fulfilling current and future market needs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.999 |
Totale projectbegroting | € 2.499.999 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITEIT DELFTpenvoerder
Land(en)
Vergelijkbare projecten binnen EIC Transition
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Scalable Hardware for Large-Scale Quantum ComputingDeveloping a scalable, fault-tolerant quantum computer using advanced cryo-CMOS technology to enhance precision and efficiency in processing complex data across various fields. | EIC Transition | € 2.499.998 | 2023 | Details |
Developing Multi-Core Silicon-Based Quantum ProcessorsThe project aims to develop a scalable FDSOI-based quantum processor demonstrator with a 4X4 multi-core architecture to bridge the gap between semiconductor techniques and quantum computing needs. | EIC Transition | € 2.440.870 | 2024 | Details |
Scalable Qubit Readout to Resolve Superconducting Quantum Computing’s Skeleton in the ClosetSilent Waves aims to revolutionize qubit readout in quantum computing with a compact Traveling Wave Parametric Amplifier, enhancing scalability and performance for practical quantum processors. | EIC Transition | € 2.479.570 | 2025 | Details |
SuPErConducTing Radio-frequency switch for qUantuM technologiesThe project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation. | EIC Transition | € 2.499.222 | 2022 | Details |
Integrated Quantum Network Node using Chip-based Qubit DevicesDelft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity. | EIC Transition | € 2.499.999 | 2025 | Details |
Scalable Hardware for Large-Scale Quantum Computing
Developing a scalable, fault-tolerant quantum computer using advanced cryo-CMOS technology to enhance precision and efficiency in processing complex data across various fields.
Developing Multi-Core Silicon-Based Quantum Processors
The project aims to develop a scalable FDSOI-based quantum processor demonstrator with a 4X4 multi-core architecture to bridge the gap between semiconductor techniques and quantum computing needs.
Scalable Qubit Readout to Resolve Superconducting Quantum Computing’s Skeleton in the Closet
Silent Waves aims to revolutionize qubit readout in quantum computing with a compact Traveling Wave Parametric Amplifier, enhancing scalability and performance for practical quantum processors.
SuPErConducTing Radio-frequency switch for qUantuM technologies
The project aims to enhance the scalability and thermal stability of quantum processors by developing the QueSt RF switch, enabling efficient multi-qubit control with minimal power dissipation.
Integrated Quantum Network Node using Chip-based Qubit Devices
Delft Networks aims to develop scalable quantum networking technology and services to demonstrate real-world applications, enhancing societal and economic value through innovative quantum connectivity.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A MILLION QUBIT QUANTUM COMPUTER - HIGHLY SCALABLE SOLID STATE QUANTUM COMPUTING PLATFORM WITH NATIVE OPTICAL NETWORKINGQuantum Transistors aims to develop a highly scalable quantum computing platform with millions of qubits, using efficient cooling methods for broader adoption and reduced costs. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Democratizing quantum computing with 3D scalable and customizable quantum processors:The project aims to revolutionize quantum computing by developing affordable, customizable, and scalable QPUs using innovative technologies, enabling faster access to high-capacity quantum processors. | EIC Accelerator | € 2.499.700 | 2023 | Details |
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICONThis project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing. | EIC Pathfinder | € 3.235.322 | 2025 | Details |
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noiseConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications. | ERC Advanced... | € 2.498.759 | 2022 | Details |
Quantum bits with Kitaev TransmonsThis project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing. | EIC Pathfinder | € 4.749.963 | 2023 | Details |
A MILLION QUBIT QUANTUM COMPUTER - HIGHLY SCALABLE SOLID STATE QUANTUM COMPUTING PLATFORM WITH NATIVE OPTICAL NETWORKING
Quantum Transistors aims to develop a highly scalable quantum computing platform with millions of qubits, using efficient cooling methods for broader adoption and reduced costs.
Democratizing quantum computing with 3D scalable and customizable quantum processors:
The project aims to revolutionize quantum computing by developing affordable, customizable, and scalable QPUs using innovative technologies, enabling faster access to high-capacity quantum processors.
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICON
This project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing.
New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise
ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.
Quantum bits with Kitaev Transmons
This project aims to develop a novel qubit using a hybrid of superconductors and semiconductors to achieve long coherence times and fault tolerance for scalable quantum computing.