When Humans and Algorithms Co-Supervise Workers: Algorithmic Management Under Conventional Employment
This research explores the impact of algorithmic management on supervisory relationships in traditional organizations through qualitative studies and simulations, aiming to enhance managerial practices in the AI era.
Projectdetails
Introduction
In recent years, we have been witnessing a move to algorithmic management, in which supervisory tasks—instructing workers; appraising their performance; and determining their compensation—are being delegated to software applications. Current understanding of such effects is limited, however, as most research on algorithmic management focuses on gig-economy platforms in which traditional supervisory relationships are absent.
Research Objective
The proposed research thus aims to explore:
- How does the introduction of algorithmic management in traditional organizations—in which algorithms operate alongside rather than instead of a human boss—shape human supervisory relationships and practices?
Methodology
To achieve this objective, I will undertake four subprojects, grounded in an empirical, in-depth qualitative approach.
Subproject 1: Supervisory Dynamics
Subproject 1 will develop a theory to describe how the introduction of algorithmic management changes supervisory dynamics in traditional organizations. I will collaborate with five organizations spanning different industries and observe workers and supervisors to uncover their experiences of supervisory relationships.
Subproject 2: Managerial Roles and Practices
Subproject 2 will provide an articulated account of how algorithmic management changes managerial roles and practices, through interviews with a large sample of managers that implement algorithmic management.
Subproject 3: Worker Responses
Subproject 3 will reveal how workers respond to conflicting directions from humans and algorithms. In this study, workers will participate in simulations of actual workplace dilemmas, created using immersive VR technology.
Subproject 4: Mitigation Strategies
Subproject 4 will address the mitigation of detrimental outcomes of algorithmic management through ethnographic action research.
Conclusion
The proposed research will provide ground-breaking insights regarding the emerging yet unexplored phenomenon of algorithmic management in traditional organizations, and it will enable practitioners to effectively and ethically update managerial practices for the age of AI oversight.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.467.455 |
Totale projectbegroting | € 1.467.455 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 30-9-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TEL AVIV UNIVERSITYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Human collaboration with AI agents in national health governance: organizational circumstances under which data analysts and medical experts follow or deviate from AI.This project aims to explore the socio-cultural dynamics of AI in health governance across six countries to develop a theory on ethical AI intervention and its impact on national health policies. | ERC Starting... | € 1.499.961 | 2023 | Details |
Artificial Intelligence and CompetitionThis project aims to analyze the competitive effects of AI algorithms in markets, focusing on price-setting and recommender systems, to inform potential regulatory frameworks. | ERC Advanced... | € 1.877.793 | 2023 | Details |
The Culture of Algorithmic Models: Advancing the Historical Epistemology of Artificial IntelligenceThis project aims to develop a new epistemology and history of AI by tracing its origins in algorithmic modeling, impacting fields like digital humanities and AI ethics. | ERC Consolid... | € 1.927.573 | 2024 | Details |
Managing People - How Employees' Social Preferences Shape the Returns to Management PracticesThis project analyzes how management practices influence firm productivity by examining the role of employees' social preferences through randomized controlled trials in various industries. | ERC Starting... | € 1.445.535 | 2022 | Details |
Participatory Algorithmic Justice: A multi-sited ethnography to advance algorithmic justice through participatory designThis project develops participatory algorithmic justice to address AI harms by centering marginalized voices in research and design interventions for equitable technology solutions. | ERC Starting... | € 1.472.390 | 2025 | Details |
Human collaboration with AI agents in national health governance: organizational circumstances under which data analysts and medical experts follow or deviate from AI.
This project aims to explore the socio-cultural dynamics of AI in health governance across six countries to develop a theory on ethical AI intervention and its impact on national health policies.
Artificial Intelligence and Competition
This project aims to analyze the competitive effects of AI algorithms in markets, focusing on price-setting and recommender systems, to inform potential regulatory frameworks.
The Culture of Algorithmic Models: Advancing the Historical Epistemology of Artificial Intelligence
This project aims to develop a new epistemology and history of AI by tracing its origins in algorithmic modeling, impacting fields like digital humanities and AI ethics.
Managing People - How Employees' Social Preferences Shape the Returns to Management Practices
This project analyzes how management practices influence firm productivity by examining the role of employees' social preferences through randomized controlled trials in various industries.
Participatory Algorithmic Justice: A multi-sited ethnography to advance algorithmic justice through participatory design
This project develops participatory algorithmic justice to address AI harms by centering marginalized voices in research and design interventions for equitable technology solutions.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Supply Chain monitoring met Machine LearningDit project onderzoekt de haalbaarheid van een innovatieve Machine Learning techniek voor continue monitoring in de supply chain. | Mkb-innovati... | € 20.000 | 2022 | Details |
Project HominisHet project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert. | Mkb-innovati... | € 20.000 | 2022 | Details |
eXplainable AI in Personalized Mental HealthcareDit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg. | Mkb-innovati... | € 350.000 | 2022 | Details |
ALGORITHMAdvanced Solutions Nederland onderzoekt de haalbaarheid van ALGORITHM, een AI-gestuurd systeem voor predictive maintenance in de industrie, met innovatieve sensoren en analysemethoden. | Mkb-innovati... | € 20.000 | 2022 | Details |
Supply Chain monitoring met Machine Learning
Dit project onderzoekt de haalbaarheid van een innovatieve Machine Learning techniek voor continue monitoring in de supply chain.
Project Hominis
Het project richt zich op het ontwikkelen van een ethisch AI-systeem voor natuurlijke taalverwerking dat vooroordelen minimaliseert en technische, economische en regelgevingsrisico's beheert.
eXplainable AI in Personalized Mental Healthcare
Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.
ALGORITHM
Advanced Solutions Nederland onderzoekt de haalbaarheid van ALGORITHM, een AI-gestuurd systeem voor predictive maintenance in de industrie, met innovatieve sensoren en analysemethoden.