The function of B cells in myocardial infarction-accelerated atherosclerosis

This project aims to investigate glucocorticoid signaling in B cells post-myocardial infarction to identify therapeutic targets for preventing accelerated atherosclerosis in cardiovascular disease.

Subsidie
€ 1.475.638
2023

Projectdetails

Introduction

Survivors of acute myocardial infarction (MI) are at a particularly high risk for accelerated atherosclerosis and recurrent atherothrombosis. Nevertheless, mechanistic preclinical studies in atherosclerosis research worldwide are typically conducted in unchallenged (without MI) atherosclerosis-prone mice and thus do not address the specific pathophysiology of post-MI atherosclerotic cardiovascular disease.

Study Overview

We conducted a single-cell RNA sequencing coupled to B cell receptor (BCR) sequencing analysis of sorted CD45+ splenocytes from atherosclerosis-prone mice that were fed an atherogenic diet for eight weeks in total. These mice were subjected four weeks after the initiation of the atherogenic diet feeding either to sham microsurgery or to permanent ligation of the left anterior descending coronary artery to induce MI.

Findings

We found that splenic mature B lymphocytes from atherosclerotic mice that suffered an MI display:

  • Altered glucocorticoid-induced responses
  • A more diversified BCR repertoire, which contains twelve unique clonotypes (named B-MIracle clones) that are not present in atherosclerotic mice without MI.

Research Aims

Here, I aim to:

  1. Investigate the effect of glucocorticoid-induced signaling in B cells in post-MI atherosclerosis in vivo by employing mouse models that allow the inducible genetic manipulation of different components of the glucocorticoid-induced signaling axis.
  2. Utilize the full heavy and light chain nucleotide sequences from our single-cell BCR-seq data to clone and produce the respective antibodies of the B-MIracle clones and examine their effect in accelerated atherosclerosis after MI in vivo.
  3. Address the relevance of these findings in atherosclerosis progression in patients with a recent MI by analyzing sorted peripheral B cell subsets and serum samples.

Conclusion

These studies may lead to the identification of precise therapeutic targets for secondary prevention of cardiovascular disease.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.475.638
Totale projectbegroting€ 1.475.638

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • MEDIZINISCHE UNIVERSITAET WIENpenvoerder

Land(en)

Austria

Vergelijkbare projecten binnen European Research Council

ERC Starting...

The extracellular matrix as a mediator of cell-cell communication in cardiovascular inflammation

The project aims to explore the extracellular matrix proteome in atherosclerosis and myocardial infarction to identify novel therapeutic targets for individualized treatment strategies.

€ 1.495.750
ERC Consolid...

Molecular Imaging to Guide Repair and Advance Therapy: Targeting the inflammation-fibrosis axis in ischemic heart disease and remote organs

MIGRATe aims to optimize imaging-guided, molecular-targeted therapies for improved cardiac repair post-myocardial infarction while assessing inter-organ communication effects.

€ 1.933.148
ERC Consolid...

Multi-omics characterization of immune triggers in Moyamoya disease

The project investigates the link between immune responses to infections and the onset of Moyamoya disease in RNF213 mutation carriers using a multi-omics approach to uncover underlying mechanisms.

€ 1.981.593
ERC Starting...

Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac Regeneration

Novel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches.

€ 1.592.281
ERC Starting...

Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluation

This project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making.

€ 1.405.894

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

B-specific: B-cell related gene and protein markers with prognostic and therapeutic value for CVD

The B-specific consortium aims to identify and target specific B-cell subsets to develop personalized therapies for atherosclerosis and improve cardiovascular disease risk assessment and management.

€ 4.006.599
EIC Pathfinder

A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial Infarction

TargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation.

€ 3.999.840
EIC Pathfinder

Human Antibody-enabled Cardiovascular Personalized Theranosis

ABCardionostics aims to develop a multi-marker PET/MRI system using human antibodies to personalize treatment and improve diagnosis of atherosclerosis in vulnerable patients.

€ 3.639.665
EIC Pathfinder

MultiomIcs based Risk stratification of Atherosclerotic CardiovascuLar disEase

The MIRACLE project aims to develop advanced multiomics-based risk prediction models for atherosclerotic cardiovascular disease by integrating genetic data and biomarkers for improved early diagnosis and treatment.

€ 4.000.000
EIC Pathfinder

Comprehensive Analysis of RBM20-induced Dilated Cardiomyopathies using Omics Approaches and Repair Interventions

CARDIOREPAIR aims to identify and therapeutically target RBM20 mutations in dilated cardiomyopathy using high-throughput genomics and bioengineering to improve heart health outcomes.

€ 4.349.410