Tellurium-free Thermoelectric Technology for Near-room-temperature Applications

Developing next-generation thermoelectric modules using Mg-based compounds to achieve high efficiency and sustainability, surpassing current bismuth telluride technology for diverse applications.

Subsidie
€ 1.498.895
2024

Projectdetails

Introduction

Thermoelectric (TE) technology – whereby heat is converted to electrical power and vice versa – holds great potential for cooling and power generation in many applications because its unique solid-state nature enables TE devices to be free from emissions and maintenance; thus providing extraordinary reliability.

Current Challenges

Realizing this potential requires developing modules that have high performance at around room temperature (-70 ˚C to 300 ˚C). Currently, almost all commercial modules are based on bismuth telluride (Bi2Te3) because of their until now unparalleled performance. However, Bi2Te3 cannot meet the rapidly increasing demand of TE technology, because tellurium (Te) is very scarce, with the Earth’s crust having a concentration of <0.001 ppm.

Proposed Solution

Therefore, it is vital to develop a next-generation technology to mitigate the potential bottleneck in raw materials supply for a sustainable future. Here I propose to develop, on Mg-based compounds, a new TE paradigm completely free from Te with groundbreaking performances that transcend the record of state-of-the-art (S.O.A.) Bi2Te3.

Development Goals

To that end, I will bring together interdisciplinary know-how with unique technical capabilities to enable a full-chain development to:

  1. Innovate synthesis methods to produce superior materials.
  2. Establish contact materials and methods to optimize TE modules.
  3. Develop methods for scale-up production of materials and module sizes.
  4. Enhance and secure the modules’ robustness.
  5. Assemble device prototypes using the obtained modules.

Performance Targets

I aim to realize conversion efficiency of ~12% in the temperature range from 30 ˚C to 300 ˚C (S.O.A. is 3-6%), and cooling ΔT of ~90 ˚C (S.O.A. is 70-75 ˚C).

Conclusion

These proof-of-principle demonstrations will pave the way for large-scale, high-performance, robust, and sustainable solid-state power generation and cooling for numerous applications, ranging from geothermal power generation to cold-chain boxes for medical storage and transportation including mRNA vaccines.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.498.895
Totale projectbegroting€ 1.498.895

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • LEIBNIZ INSTITUT FUR FESTKORPER UND WERKSTOFFORSCHUNG DRESDEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

COOLing for Electricity Production: Battery-free Technology

COOLed aims to develop a battery-free technology using 3D polymer metamaterials and 2D transition metal selenides to generate electricity from cold space for IoT devices in smart cities.

€ 2.000.000
ERC Advanced...

Origami inspired thermoelectric generators by printing and folding

ORTHOGONAL aims to develop cost-effective, scalable thermoelectric generators using printable nanocomposite materials to harvest low-temperature waste heat for powering future sensor devices.

€ 2.410.155
ERC Consolid...

THERmal MOdulators based on novel 2D mxEne materials for nearly isothermAL battery operation

THERMO2DEAL aims to develop a novel interfacial thermal modulator using MXenes for dynamic heat management in batteries, enhancing performance and lifespan through advanced thermal regulation.

€ 1.988.794
ERC Advanced...

Powering wearable devices by human heat with highly efficient, flexible, bio-inspired generators

POWERbyU aims to develop high-efficiency, flexible thermoelectric generators using innovative materials and designs to enable self-powered wearable devices and other applications.

€ 2.499.266
ERC Starting...

On-chip energy harvesting and management enabled by Thermal engineering of two-dimensional MAterials

TheMA project aims to develop novel 2D semiconductor nanomaterials for enhanced thermal management and thermoelectric devices, improving energy efficiency in electronics and IoT applications.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

EIC Transition

Meta-Antenna and Energy harvesting/storage modules development for autarkic sensors arrays

METATHERM aims to create a self-sustaining energy harvesting and communication system for sensor arrays using innovative metamaterial antennas and ionic thermoelectric devices.

€ 2.498.710
EIC Pathfinder

For Tunable Thermochemical Energy Storage

4TunaTES aims to develop a flexible Thermo-Chemical Energy Storage technology that adapts to various applications, reducing R&D costs by 90% and unlocking thermal energy storage potential.

€ 2.779.713
EIC Pathfinder

Cooling with Electrocaloric Polymers

This project aims to develop efficient electrocaloric cooling technologies using advanced polymers and capacitors, targeting a 1 kW cooling power and 60% efficiency to revolutionize energy use in cooling systems.

€ 3.781.325
EIC Pathfinder

A paradigm shift for the future's thermal management devices through radical innovation in new materials and additive manufacturing

ThermoDust aims to revolutionize thermal management by developing a novel material using nanotechnology and additive manufacturing for enhanced heat transport in electronics, EVs, and aerospace.

€ 3.275.985
EIC Transition

Solid-State Cooling Technology for Cryogenic Devices

Developing a compact, fully electrical solid-state refrigerator to achieve sub-kelvin temperatures for advanced electronics and photonics, eliminating the need for 3He and heavy magnets.

€ 1.298.411