Spins Interfaced with Light for Quantum Silicon technologies
The SILEQS project aims to demonstrate indistinguishable single-photon emission and spin control from silicon defects to enable scalable quantum communication technologies.
Projectdetails
Introduction
Leveraging the success of the microelectronics and integrated photonics industries, silicon is one of the most promising platforms for developing large-scale quantum technologies. Quantum chips already available in silicon rely on either long-lived electrical qubits based on individual quantum dots or single donors, or on photonic qubits probabilistically generated by non-linear optical processes.
Objective
Another type of quantum system could combine the advantages of both former qubits by featuring at the same time a stationary qubit with long coherence times and an optical interface adapted to long-distance exchange of quantum information. However, such a qubit that would be associated with optically-active spin defects is still to be demonstrated in silicon. This is the challenging objective of the current project.
Background
The starting point of the SILEQS project is the recent discovery that silicon hosts many fluorescent point defects that can be optically isolated at a single scale, and furthermore emit at the near-infrared range and telecom bands associated with minimal losses in optical fibers.
Goals
This project aims to demonstrate for the first time in silicon:
- The indistinguishable single-photon emission from individual defects.
- The control over their spin degrees of freedom to create multi-spin quantum registers coupled to single photons.
Impact
Such achievements would open the door to developing silicon-integrated deterministic sources of photonic qubits and spin qubits interfaced with light for long-distance quantum communications in a platform adapted to large-scale nanofabrication and integration.
Considering the advanced nanotechnology based on silicon, the SILEQS project could have significant impact in quantum technologies, including:
- Quantum integrated photonics
- Large-scale quantum networks
- Solid-state hybrid quantum systems
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Optical Entanglement of Nuclear Spins in SiliconOpENSpinS aims to enhance silicon-based quantum information processing by using erbium nuclear spins as qubits, enabling long-distance entanglement and scalable quantum networks through advanced photonic integration. | ERC Consolid... | € 1.984.375 | 2025 | Details |
Monolithic Silicon Quantum Communication CircuitryMOSQITO aims to simplify quantum key distribution using a novel silicon integration approach, enabling practical QKD applications in telecommunications and addressing cost and size challenges. | ERC Proof of... | € 150.000 | 2024 | Details |
Atomic scale coherent manipulation of the electron spin in semiconductorsOneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications. | ERC Starting... | € 1.913.122 | 2024 | Details |
Lithium Niobate Quantum systemsThis project aims to develop integrated Lithium Niobate Quantum systems (LiNQs) to create a comprehensive platform for scalable quantum photonic circuits, enhancing Europe's quantum technology capabilities. | ERC Starting... | € 2.499.381 | 2022 | Details |
Quantum interfaces with single moleculesQUINTESSEnCE aims to enhance quantum devices by developing interfaces between single photons, spins, and phonons within a single molecule, enabling unprecedented control and new quantum technologies. | ERC Consolid... | € 1.999.993 | 2023 | Details |
Optical Entanglement of Nuclear Spins in Silicon
OpENSpinS aims to enhance silicon-based quantum information processing by using erbium nuclear spins as qubits, enabling long-distance entanglement and scalable quantum networks through advanced photonic integration.
Monolithic Silicon Quantum Communication Circuitry
MOSQITO aims to simplify quantum key distribution using a novel silicon integration approach, enabling practical QKD applications in telecommunications and addressing cost and size challenges.
Atomic scale coherent manipulation of the electron spin in semiconductors
OneSPIN aims to coherently probe and engineer single electronic spins in 2D semiconductors using advanced scanning tunneling microscopy to enhance spin coherence for quantum information applications.
Lithium Niobate Quantum systems
This project aims to develop integrated Lithium Niobate Quantum systems (LiNQs) to create a comprehensive platform for scalable quantum photonic circuits, enhancing Europe's quantum technology capabilities.
Quantum interfaces with single molecules
QUINTESSEnCE aims to enhance quantum devices by developing interfaces between single photons, spins, and phonons within a single molecule, enabling unprecedented control and new quantum technologies.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICONThis project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing. | EIC Pathfinder | € 3.235.322 | 2025 | Details |
Quantum technology with a spin-photon architecture for thousand-qubit chipsets at telecom wavelengthsQuSPARC aims to develop wafer-scale processes for thousands of high-quality qubit sites in silicon carbide, advancing scalable quantum information devices for million-qubit systems. | EIC Pathfinder | € 2.992.374 | 2025 | Details |
Developing Multi-Core Silicon-Based Quantum ProcessorsThe project aims to develop a scalable FDSOI-based quantum processor demonstrator with a 4X4 multi-core architecture to bridge the gap between semiconductor techniques and quantum computing needs. | EIC Transition | € 2.440.870 | 2024 | Details |
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT NetworksQOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets. | EIC Pathfinder | € 3.481.857 | 2025 | Details |
Quantum reservoir computing for efficient signal processingThe QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains. | EIC Pathfinder | € 2.522.411 | 2024 | Details |
ENABLING NEW QUANTUM FRONTIERS WITH SPIN ACOUSTICS IN SILICON
This project aims to develop a scalable silicon-based quantum information platform by enhancing qubit control, readout, and coupling mechanisms, fostering collaboration across Europe for advanced quantum computing.
Quantum technology with a spin-photon architecture for thousand-qubit chipsets at telecom wavelengths
QuSPARC aims to develop wafer-scale processes for thousands of high-quality qubit sites in silicon carbide, advancing scalable quantum information devices for million-qubit systems.
Developing Multi-Core Silicon-Based Quantum Processors
The project aims to develop a scalable FDSOI-based quantum processor demonstrator with a 4X4 multi-core architecture to bridge the gap between semiconductor techniques and quantum computing needs.
Quantum-Optic Silicon as a Commodity: Extending the Trust Continuum till the Edge of ICT Networks
QOSiLICIOUS aims to simplify quantum key distribution by integrating QRNG and QKD on silicon for cost-effective, compact solutions in secure communication across various markets.
Quantum reservoir computing for efficient signal processing
The QRC-4-ESP project aims to develop the first quantum reservoir computing systems using superconducting and SiC defect qubits to revolutionize quantum communication and sensing with significant performance gains.