Precision medicine approach to rare vascular malformations to enhance understanding, diagnostics and therapy
This project aims to enhance precision medicine for vascular malformations through AI-assisted histology, advanced genetic testing, and tailored pharmacological treatments to improve patient outcomes.
Projectdetails
Introduction
Vascular malformations are clinically very heterogeneous, ranging from small local ‘birthmarks’ to life-threatening entities affecting entire limbs, organs, or larger parts of the human body. Often, these conditions require surgical and/or pharmacological intervention to prevent further disease progression and to increase patients’ quality of life. Therefore, an accurate diagnosis is crucial for appropriate treatment and management.
Challenges in Diagnosis and Treatment
However, our current knowledge on vascular malformations is very limited, making diagnosis and treatment very difficult due to:
- An inadequate understanding of the underlying histological alterations causing the phenotype.
- Very limited genetic diagnostic testing, which in most cases does not allow a confirmed molecular diagnosis.
- Poor curative surgical and pharmacological treatment approaches.
As the current pharmacological therapy regimen with drugs from oncology or transplantation medicine is more like a try & error than a precision medicine approach, there is a high risk of drug side effects and non-response to therapy, thus leading to the progression of the disease.
Proposed Solution
I want to tackle these obstacles with a multidisciplinary approach to precision medicine for vascular malformations to prevent disease progression and improve patient outcomes. Therefore, my proposed workflow provides:
- A novel histological classification based on deep phenotyping using diagnostic AI-assisted 3D-Histology.
- Improved diagnostic testing through analysis of the coding and non-coding genome using state-of-the-art sequencing techniques and bioinformatics tools.
- Patient-tailored pharmacological treatments based on FDA-approved drug sub-library screenings tested on the patient-derived cells using state-of-the-art imaging techniques.
Conclusion
This innovative approach to precision medicine has the great potential to transform clinical practice and provide, for the very first time, state-of-the-art diagnosis and treatment for patients with vascular malformations.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.498.316 |
Totale projectbegroting | € 1.498.316 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular DiseaseThe 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health. | ERC Starting... | € 1.496.395 | 2022 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC Starting... | € 1.852.430 | 2023 | Details |
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapyThis project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling. | ERC Starting... | € 1.500.000 | 2023 | Details |
Multiscale mechanobiological synergies in vascular homeostasis, ageing and rejuvenationJuvenTwin aims to revolutionize vascular ageing treatment by using multiscale digital twins to simulate and develop therapies targeting mechanobiological effects in aged arteries. | ERC Advanced... | € 2.795.438 | 2024 | Details |
Targeting long non-coding RNAs for novel treatment strategies in vascular diseasesThis project aims to identify and target specific long non-coding RNAs involved in vascular diseases using innovative RNA interference strategies to improve treatment outcomes. | ERC Consolid... | € 1.999.495 | 2023 | Details |
Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapy
This project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling.
Multiscale mechanobiological synergies in vascular homeostasis, ageing and rejuvenation
JuvenTwin aims to revolutionize vascular ageing treatment by using multiscale digital twins to simulate and develop therapies targeting mechanobiological effects in aged arteries.
Targeting long non-coding RNAs for novel treatment strategies in vascular diseases
This project aims to identify and target specific long non-coding RNAs involved in vascular diseases using innovative RNA interference strategies to improve treatment outcomes.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
Minimally invasive suturing for vascular bore closure and heart defect repairNovelrad's NVCD closure device aims to minimize complications in large-bore vascular closures during cardiac surgeries through innovative micro-suturing technology, facilitating safer and faster procedures. | EIC Accelerator | € 2.499.999 | 2024 | Details |
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial InfarctionTargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation. | EIC Pathfinder | € 3.999.840 | 2023 | Details |
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical applicationThis project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer. | EIC Pathfinder | € 3.797.562 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
Minimally invasive suturing for vascular bore closure and heart defect repair
Novelrad's NVCD closure device aims to minimize complications in large-bore vascular closures during cardiac surgeries through innovative micro-suturing technology, facilitating safer and faster procedures.
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial Infarction
TargetMI aims to rapidly discover novel drug targets and biomarkers for myocardial infarction using a high-throughput multi-omic approach on 1000 samples, enhancing clinical risk prediction and translation.
Exploiting ex vivo expansion and deep multiomics profiling to bring novel, efficient and safer hematopoietic stem cell gene therapies to clinical application
This project aims to innovate hematopoietic stem cell identification and engineering through advanced culture techniques and multiomics profiling, enhancing gene therapy for blood disorders and cancer.