Development of novel 3D vascularized cardiac models to investigate Coronary Microvascular Disease
The 3DVasCMD project aims to develop a 3D vascularized cardiac model using iPSC technology to study coronary microvascular disease and identify therapeutic targets for improved cardiovascular health.
Projectdetails
Introduction
Coronary microvascular disease (CMD) is a significant healthcare challenge, contributing to ischemic heart disease, the number one global cause of human mortality. CMD is associated with dysfunction of small coronary vessels, due to ageing, obesity, and metabolic disease, that reduces blood flow and oxygenation in the heart. Despite its widespread impact on health, our understanding is limited to animal studies, which do not recapitulate the pathophysiology in humans, nor can they be used to reveal cellular crosstalk in a controlled manner. Thus, there is a critical need to develop a humanized in vitro model to mimic CMD.
Advances in Technology
Advances in organ-on-chip and induced pluripotent stem cell (iPSC) technologies, together with our state-of-the-art 3D humanized vascular models, provide new opportunities to investigate CMD.
Project Goals
3DVasCMD builds on our expertise to develop a complex vascularized cardiac model to reveal pathological mechanisms and novel therapeutic targets of CMD. By combining cutting-edge tissue-engineering approaches we will:
- Develop and characterize a 3D vascularized cardiac model.
- Determine the impact of known risk factors on the pathophysiology of CMD.
- Develop a high-throughput system for cardiovascular drug screening.
Our model will reveal cardiac tissue-vessel crosstalk by combining autologously-differentiated iPSCs in a controlled fluidic environment. This model will enable unprecedented study of ischemia, diabetes, and sex-hormone contributions to CMD using 3D in vitro tissues. Ultimately, a high-throughput version of our model, combined with machine learning, will predict the efficacy of therapeutic targets.
Interdisciplinary Approach
Using an interdisciplinary approach, 3DVasCMD will impact our understanding of how microenvironmental and heritable risk factors contribute to CMD. This model has the potential to study multiple facets of vascular disease and can be further developed into a preclinical tool, which will be a breakthrough for cardiovascular biology and medicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.496.395 |
Totale projectbegroting | € 1.496.395 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 31-3-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- EUROPEAN MOLECULAR BIOLOGY LABORATORYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC Advanced... | € 2.500.000 | 2023 | Details |
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTsG-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease. | ERC Starting... | € 1.497.351 | 2022 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC Starting... | € 1.852.430 | 2023 | Details |
Real-time Multiscale Imaging of Pathological Calcification - Zooming in on Aortic Valve CalcificationDeveloping a designer tissue imaging platform to dynamically study extracellular matrix changes in Calcifying Aortic Valve Disease, aiming to uncover mechanisms for future drug therapies. | ERC Advanced... | € 2.500.000 | 2025 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC Consolid... | € 2.969.219 | 2022 | Details |
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.
Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs
G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Real-time Multiscale Imaging of Pathological Calcification - Zooming in on Aortic Valve Calcification
Developing a designer tissue imaging platform to dynamically study extracellular matrix changes in Calcifying Aortic Valve Disease, aiming to uncover mechanisms for future drug therapies.
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Bringing 3D cardiac tissues to high throughput for drug discovery screensDeveloping a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability. | EIC Transition | € 1.457.500 | 2023 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell CultureThe Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials. | EIC Transition | € 2.488.750 | 2024 | Details |
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients. | EIC Pathfinder | € 4.137.668 | 2023 | Details |
MultiomIcs based Risk stratification of Atherosclerotic CardiovascuLar disEaseThe MIRACLE project aims to develop advanced multiomics-based risk prediction models for atherosclerotic cardiovascular disease by integrating genetic data and biomarkers for improved early diagnosis and treatment. | EIC Pathfinder | € 4.000.000 | 2023 | Details |
Bringing 3D cardiac tissues to high throughput for drug discovery screens
Developing a high-throughput 3D cardiac model using microfluidic technology to enhance drug discovery for cardiovascular disease by improving predictive accuracy and scalability.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Prefabricated Mature Blood Vessels and Tools for Vascularized 3D Cell Culture
The Vasc-on-Demand project aims to develop three innovative products for easy generation of vascularized 3D tissues, enhancing research and drug testing while reducing reliance on animal trials.
Enabling advances in diagnosis, patient stratification and treatment for dilated cardiomyopathy patients and families.
The DCM-NEXT consortium aims to enhance genetic testing and develop novel therapies for dilated cardiomyopathy by leveraging extensive clinical and omics data from 11,750 patients.
MultiomIcs based Risk stratification of Atherosclerotic CardiovascuLar disEase
The MIRACLE project aims to develop advanced multiomics-based risk prediction models for atherosclerotic cardiovascular disease by integrating genetic data and biomarkers for improved early diagnosis and treatment.