Genetically anchored drug target discovery for neglected diseases
GenDrug aims to develop innovative algorithms integrating genomic and real-world data to identify drug targets and accelerate drug development for neglected non-communicable diseases.
Projectdetails
Introduction
There are thousands of common non-communicable diseases (NCDs) that lack safe and effective drugs despite accounting for most health care expenses and years lived with disability. Me and my team will address this unmet clinical need by developing innovative algorithms that generate and integrate evidence from massive scale genomic studies with real-world data based on millions of patients from electronic health records (EHRs) to identify potent drug targets and opportunities for drug repurposing.
Objectives
To achieve this aim, we will:
- Harness ethnically diverse biobanks (>500,000 participants) with whole-exome/genome sequencing and EHR linkage powered by deep learning models to gain new insights into the aetiology of neglected NCDs that are needed for rational drug design.
- Create a genetically anchored biomedical knowledge graph that incorporates rich functional genomic data from single-cell studies with drug characteristics to predict promising drug targets using deep graph neural networks.
- Establish convergence of genetic and real-world evidence of proposed drug targets by emulating clinical trials in multiple large EHR datasets (>50 million patients).
Resources
Unique access to diverse hospital cohorts and a clinical trial unit at one of the largest European hospitals, the Charité Universitätsmedizin Berlin, will further accelerate clinical translation for selected examples.
Conclusion
With GenDrug, we aim to build a community resource to enable and accelerate drug development using ‘big data’ for hundreds to thousands of diseases that currently lack safe and effective treatments.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.498.089 |
Totale projectbegroting | € 1.498.089 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Learning and modeling the molecular response of single cells to drug perturbationsDeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings. | ERC Advanced... | € 2.497.298 | 2023 | Details |
Targeting the dark side of the human genome—non-coding regulatory elements—to treat diseasesTargetNCREs aims to harness therapeutic potential of non-coding regulatory elements through innovative high-throughput screening, validating targets for commercial applications and market development. | ERC Proof of... | € 150.000 | 2024 | Details |
Development and validation of a framework using multiple sources of real-world data to assess the benefit-risk balance of advanced therapies in inflammatory bowel diseaseThis project aims to enhance treatment decision-making for inflammatory bowel diseases by linking real-world data sources to emulate clinical trials and develop a decision support system incorporating patient preferences. | ERC Starting... | € 1.473.454 | 2024 | Details |
Deep learning analysis of imaging and metabolomic data to accelerate antibiotic discovery against antimicrobial resistanceAI4AMR aims to revolutionize antibiotic discovery by using advanced AI and multi-dimensional data analysis to identify novel antibiotics and their mechanisms of action against antimicrobial resistance. | ERC Synergy ... | € 10.968.734 | 2025 | Details |
Probing (Orphan) Nuclear Receptors in NeurodegenerationNeuRoPROBE aims to develop chemical probes and PROTACs for orphan nuclear receptors TLX and Nurr1 using AI to advance therapeutic strategies against neurodegenerative diseases. | ERC Starting... | € 1.498.813 | 2022 | Details |
Learning and modeling the molecular response of single cells to drug perturbations
DeepCell aims to model cellular responses to drug perturbations using multiomics and deep learning, facilitating optimal treatment design and expediting drug discovery in clinical settings.
Targeting the dark side of the human genome—non-coding regulatory elements—to treat diseases
TargetNCREs aims to harness therapeutic potential of non-coding regulatory elements through innovative high-throughput screening, validating targets for commercial applications and market development.
Development and validation of a framework using multiple sources of real-world data to assess the benefit-risk balance of advanced therapies in inflammatory bowel disease
This project aims to enhance treatment decision-making for inflammatory bowel diseases by linking real-world data sources to emulate clinical trials and develop a decision support system incorporating patient preferences.
Deep learning analysis of imaging and metabolomic data to accelerate antibiotic discovery against antimicrobial resistance
AI4AMR aims to revolutionize antibiotic discovery by using advanced AI and multi-dimensional data analysis to identify novel antibiotics and their mechanisms of action against antimicrobial resistance.
Probing (Orphan) Nuclear Receptors in Neurodegeneration
NeuRoPROBE aims to develop chemical probes and PROTACs for orphan nuclear receptors TLX and Nurr1 using AI to advance therapeutic strategies against neurodegenerative diseases.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Genotype Landscape een big data gedreven platform voor zeldzame genetische ziektesHet project richt zich op het ontwikkelen van een platform voor marktonderzoek dat bedrijven helpt bij het nauwkeurig inschatten van doelgroepen voor therapieën van zeldzame erfelijke ziektes. | Mkb-innovati... | € 20.000 | 2020 | Details |
TraffikGene-Tx: Targeted Peptide Carriers for RNA DeliveryTraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs. | EIC Transition | € 2.498.963 | 2023 | Details |
Drug Discovery IntelligenceHet project ontwikkelt een AI-gestuurde softwareapplicatie om risico's in de medicijnontwikkeling te verminderen door het voorspellen van therapeutische targets en drug-target interacties. | Mkb-innovati... | € 20.000 | 2020 | Details |
Genotype Landscape een big data gedreven platform voor zeldzame genetische ziektes
Het project richt zich op het ontwikkelen van een platform voor marktonderzoek dat bedrijven helpt bij het nauwkeurig inschatten van doelgroepen voor therapieën van zeldzame erfelijke ziektes.
TraffikGene-Tx: Targeted Peptide Carriers for RNA Delivery
TraffikGene-Tx aims to develop safe, scalable peptide carriers for targeted RNA delivery, addressing genetic diseases and enhancing NAT therapies to improve patient outcomes and reduce healthcare costs.
Drug Discovery Intelligence
Het project ontwikkelt een AI-gestuurde softwareapplicatie om risico's in de medicijnontwikkeling te verminderen door het voorspellen van therapeutische targets en drug-target interacties.