Enantioselective screw-dislocation-mediated growth of chiral nanocrystals

This project aims to investigate the role of screw dislocations in the chiral shape formation of nanocrystals, enhancing our understanding of crystallization and enabling novel applications in material design.

Subsidie
€ 1.500.000
2023

Projectdetails

Introduction

In many scientific disciplines, structural symmetry considerations are key. Specifically, mechanisms by which symmetry translates from atomic and molecular building blocks to crystal structures and shapes attract a great deal of attention. A fascinating aspect of this is related to chirality.

Historical Context

Louis Pasteur’s monumental work, reported in 1848, on the formation of chiral shapes in crystals made from chiral molecules, led to an intuition that chiral building blocks naturally lead to chiral shapes in crystals. Yet, after countless observations ever since of crystals with chiral shapes, mechanisms of their formation are understood to be often more complex and elusive than first imagined.

Proposed Work

In the work proposed here, nanocrystals will serve as convenient model systems for studies of the interplay between crystallization and chiral shape formation. They are beneficial for this purpose as they can mimic “embryonic” stages of crystal growth, exhibiting structural details that can be retrieved at remarkable resolution, which are often hidden in macroscopic crystals.

Focus of the Study

Specifically, I will focus on a universal mechanism by which crystals grow at low concentrations of building blocks, assisted by a common type of imperfections, namely, screw dislocations. I will tackle key unresolved questions on the interplay between chirality, screw dislocations, and crystallization:

  1. How does screw-dislocation-mediated growth proceed in the presence of chiral additives that can bind to growing crystals, and how do these dislocations even come to be?
  2. How general is this mechanism, and how often was it overlooked throughout history?

Expected Outcomes

The results obtained in this work, on the one hand, will lead to a general design principle to control nano-scale chirality in many inorganic materials, beneficial for novel applications. On the other hand, they have the potential to elucidate a missing piece of crystal growth theory and lead to a paradigm shift in our understanding of shape chirality in crystals.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-12-2023
Einddatum30-11-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • BAR ILAN UNIVERSITYpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Crystals of single chirality via non-equilibrium routes

This project aims to develop a novel method for converting racemic compounds into desired enantiomers by manipulating crystal stability under non-equilibrium conditions, impacting pharmaceutical production.

€ 2.415.625
ERC Consolid...

Nanohelicoid metamaterials templated by cellulose nanocrystals with end-tethered polymers

The CELICOIDS project aims to develop a new class of chiral metamaterials using cellulose nanocrystal-based liquid crystals to enhance chiral light-matter interactions for advanced applications.

€ 1.998.313
ERC Starting...

Controlling chirality in atomically thin quantum electronic materials

CHIROTRONICS aims to experimentally observe and control chiral responses in atomically thin quantum materials to develop innovative chiral technologies for diverse applications.

€ 1.799.250
ERC Consolid...

Heterogeneous Asymmetric Nanocluster-catalysis Design

The HAND project aims to develop atomically precise chiral nanoclusters for heterogeneous asymmetric catalysis to achieve enantioselectivity and enhance understanding of chirality at surfaces.

€ 1.993.224
ERC Starting...

Chiral phononics: Controlling electronic phases with phonon angular momentum

The project CHIRALPHONONICS aims to utilize chiral phonons for ultrafast control of solids, enabling new functionalities and quantum materials through angular momentum manipulation.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits

CHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing.

€ 3.263.726
EIC Pathfinder

Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chip

TwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics.

€ 3.679.925