Nanohelicoid metamaterials templated by cellulose nanocrystals with end-tethered polymers
The CELICOIDS project aims to develop a new class of chiral metamaterials using cellulose nanocrystal-based liquid crystals to enhance chiral light-matter interactions for advanced applications.
Projectdetails
Introduction
Chirality plays a fundamental role in natural sciences and pharmacology. The ability to detect chiral molecules relies heavily on inherently weak circularly polarized light-matter interactions. Such interactions are enhanced in the presence of chiral metamaterials, which exhibit extraordinary electromagnetic properties not observed in nature.
Current Challenges
To date, large and broadband circular dichroism in the UV-visible spectrum requires arrays of metallic nanohelices in order to combine internal and Bragg resonances. However, their fabrication relies on costly electron/ion beam lithography or physical vapor deposition, in which it is difficult and time-consuming to control nanoscale morphology over large areas.
Need for Innovation
New types of helix metamaterials and engineering processes based on self-assembly concepts are absolutely necessary in order to be viable for future technologies. Nevertheless, self-assembled metamaterials with large, broadband, and tunable chiroptical responses in the UV-visible region pose a great challenge due to the required subwavelength feature sizes.
Proposed Solution
To this end, the helicoidal morphologies of chiral liquid crystals provide the ideal platform for maximizing chiral light-matter interactions. The objective of CELICOIDS is to investigate the use of the chiral liquid crystal phases of cellulose nanocrystals with end-tethered polyoxyethylene analogues as templates for the fabrication of a new class of metamaterial, solid metallic nanohelicoids.
Recent Breakthrough
A recent breakthrough that now makes this project possible is the discovery that such cellulose nanocrystal hybrids form chiral liquid crystal phases. As one of the very few researchers in the world with the combined expertise in cellulose chemistry, polymer grafting, and colloidal assembly, I am the ideal candidate to achieve success.
Future Implications
New functionalities are envisioned thereafter, applicable to future devices for invisibility cloaking, super-resolution imaging, and chiral sensing, prompting a change in paradigm in metamaterials.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.313 |
Totale projectbegroting | € 1.998.313 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 29-2-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITAT POLITECNICA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
[n]Helicene Diimides: A Twist in Diimide ChemistryDevelop chiral organic semiconductors using [n]helicene diimides to enhance chiroptical responses and charge transport for advanced optoelectronic applications. | ERC Starting... | € 1.499.686 | 2022 | Details |
Enantioselective screw-dislocation-mediated growth of chiral nanocrystalsThis project aims to investigate the role of screw dislocations in the chiral shape formation of nanocrystals, enhancing our understanding of crystallization and enabling novel applications in material design. | ERC Starting... | € 1.500.000 | 2023 | Details |
Controlling chirality in atomically thin quantum electronic materialsCHIROTRONICS aims to experimentally observe and control chiral responses in atomically thin quantum materials to develop innovative chiral technologies for diverse applications. | ERC Starting... | € 1.799.250 | 2022 | Details |
SOMO-HOMO Inversion For chiral open-shell pi-conjUgated systeMsThis project aims to design stable chiral organic diradicals with inverted SOMO-HOMO levels to enhance optoelectronic devices' efficiency and enable advanced spin-filter applications. | ERC Starting... | € 1.744.065 | 2022 | Details |
Bioinspired composite architectures for responsive 4 dimensional photonicsBIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications. | ERC Starting... | € 1.498.579 | 2023 | Details |
[n]Helicene Diimides: A Twist in Diimide Chemistry
Develop chiral organic semiconductors using [n]helicene diimides to enhance chiroptical responses and charge transport for advanced optoelectronic applications.
Enantioselective screw-dislocation-mediated growth of chiral nanocrystals
This project aims to investigate the role of screw dislocations in the chiral shape formation of nanocrystals, enhancing our understanding of crystallization and enabling novel applications in material design.
Controlling chirality in atomically thin quantum electronic materials
CHIROTRONICS aims to experimentally observe and control chiral responses in atomically thin quantum materials to develop innovative chiral technologies for diverse applications.
SOMO-HOMO Inversion For chiral open-shell pi-conjUgated systeMs
This project aims to design stable chiral organic diradicals with inverted SOMO-HOMO levels to enhance optoelectronic devices' efficiency and enable advanced spin-filter applications.
Bioinspired composite architectures for responsive 4 dimensional photonics
BIO4D aims to create biomimetic 3D photonic structures using self-ordering nanomaterials and advanced fabrication to enable dynamic optical responses for various applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuitsCHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing. | EIC Pathfinder | € 3.263.726 | 2022 | Details |
Chiral Light Emitting Diodes based in Photonic ArchitecturesRADIANT aims to develop cost-efficient chiral LEDs using scalable metasurfaces for enhanced optical properties, revolutionizing display, communication, and lighting technologies. | EIC Pathfinder | € 3.654.473 | 2024 | Details |
Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chipTwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics. | EIC Pathfinder | € 3.679.925 | 2022 | Details |
Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits
CHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing.
Chiral Light Emitting Diodes based in Photonic Architectures
RADIANT aims to develop cost-efficient chiral LEDs using scalable metasurfaces for enhanced optical properties, revolutionizing display, communication, and lighting technologies.
Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chip
TwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics.