Morphing tubular structures for adaptive biomedical devices
Stripe-oMorph aims to develop adaptable, bio-inspired morphing tubular structures for interventional medical devices, enhancing their compatibility with complex geometries and patient-specific needs.
Projectdetails
Introduction
Morphing tubular structures are extensively used in interventional medical devices (e.g., stents). Current solutions lack adaptability to complex geometries and to patient-specific needs.
Proposal
Stripe-oMorph proposes the use of devices with superior morphing capabilities, bio-inspired by motile microorganisms. These microorganisms were previously investigated in the ERC AdG MicroMotility.
Concept
The proposed devices are based on the concept of morphing-by-sliding of parallel strips.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 31-3-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Dynamic control of Gaussian morphing structures via embedded fluidic networksThe project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications. | ERC Starting... | € 1.499.601 | 2025 | Details |
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogelsmorphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth. | ERC Starting... | € 1.499.906 | 2023 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC Advanced... | € 3.475.660 | 2025 | Details |
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological TestingISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies. | ERC Proof of... | € 150.000 | 2023 | Details |
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffoldsThis project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing. | ERC Proof of... | € 150.000 | 2023 | Details |
Dynamic control of Gaussian morphing structures via embedded fluidic networks
The project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications.
4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing
ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.
Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restorationBIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness. | EIC Pathfinder | € 4.039.541 | 2022 | Details |
Mimicking Adaptation and Plasticity in WORMSMAPWORMS aims to develop bio-inspired, shape-morphing robots using smart hydrogels that adapt to environmental stimuli, enhancing robotics through biological principles and advanced materials. | EIC Pathfinder | € 2.896.750 | 2022 | Details |
Innovatieve medische intravasculaire katheters op basis van nieuwe techniek smart materialsHet project ontwikkelt een slimme intravasculaire katheter die vorm en stijfheid kan aanpassen met een externe stimulus voor betere medische behandelingen. | Mkb-innovati... | € 20.000 | 2022 | Details |
Biomimetic Membranes for Organ SupportBioMembrOS aims to develop advanced biomimetic membranes for artificial respiration devices by mimicking the gas exchange structures of fish and birds to enhance efficiency and hemocompatibility. | EIC Pathfinder | € 2.897.578 | 2024 | Details |
building vascular networks and Blood-Brain-Barriers through a Biomimetic manufacturing Technology for the fabrication of Human tissues and ORgansTHOR aims to revolutionize tissue engineering by creating patient-specific, fully functional human tissues using bioinspired mini-robots, eliminating the need for organ transplants. | EIC Pathfinder | € 3.994.150 | 2023 | Details |
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration
BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.
Mimicking Adaptation and Plasticity in WORMS
MAPWORMS aims to develop bio-inspired, shape-morphing robots using smart hydrogels that adapt to environmental stimuli, enhancing robotics through biological principles and advanced materials.
Innovatieve medische intravasculaire katheters op basis van nieuwe techniek smart materials
Het project ontwikkelt een slimme intravasculaire katheter die vorm en stijfheid kan aanpassen met een externe stimulus voor betere medische behandelingen.
Biomimetic Membranes for Organ Support
BioMembrOS aims to develop advanced biomimetic membranes for artificial respiration devices by mimicking the gas exchange structures of fish and birds to enhance efficiency and hemocompatibility.
building vascular networks and Blood-Brain-Barriers through a Biomimetic manufacturing Technology for the fabrication of Human tissues and ORgans
THOR aims to revolutionize tissue engineering by creating patient-specific, fully functional human tissues using bioinspired mini-robots, eliminating the need for organ transplants.