Morphing tubular structures for adaptive biomedical devices

Stripe-oMorph aims to develop adaptable, bio-inspired morphing tubular structures for interventional medical devices, enhancing their compatibility with complex geometries and patient-specific needs.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Morphing tubular structures are extensively used in interventional medical devices (e.g., stents). Current solutions lack adaptability to complex geometries and to patient-specific needs.

Proposal

Stripe-oMorph proposes the use of devices with superior morphing capabilities, bio-inspired by motile microorganisms. These microorganisms were previously investigated in the ERC AdG MicroMotility.

Concept

The proposed devices are based on the concept of morphing-by-sliding of parallel strips.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-10-2022
Einddatum31-3-2024
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTEpenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Dynamic control of Gaussian morphing structures via embedded fluidic networks

The project aims to create fully controllable shape-morphing materials using hybrid elastic plates with fluid-filled cavities, enabling precise programming of shape, mechanics, and deformation dynamics for biomedical applications.

€ 1.499.601
ERC Starting...

4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels

morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.

€ 1.499.906
ERC Advanced...

Engineering soft microdevices for the mechanical characterization and stimulation of microtissues

This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.

€ 3.475.660
ERC Proof of...

Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing

ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.

€ 150.000
ERC Proof of...

Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds

This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration

BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.

€ 4.039.541
EIC Pathfinder

Mimicking Adaptation and Plasticity in WORMS

MAPWORMS aims to develop bio-inspired, shape-morphing robots using smart hydrogels that adapt to environmental stimuli, enhancing robotics through biological principles and advanced materials.

€ 2.896.750
Mkb-innovati...

Innovatieve medische intravasculaire katheters op basis van nieuwe techniek smart materials

Het project ontwikkelt een slimme intravasculaire katheter die vorm en stijfheid kan aanpassen met een externe stimulus voor betere medische behandelingen.

€ 20.000
EIC Pathfinder

Biomimetic Membranes for Organ Support

BioMembrOS aims to develop advanced biomimetic membranes for artificial respiration devices by mimicking the gas exchange structures of fish and birds to enhance efficiency and hemocompatibility.

€ 2.897.578
EIC Pathfinder

building vascular networks and Blood-Brain-Barriers through a Biomimetic manufacturing Technology for the fabrication of Human tissues and ORgans

THOR aims to revolutionize tissue engineering by creating patient-specific, fully functional human tissues using bioinspired mini-robots, eliminating the need for organ transplants.

€ 3.994.150