Drivers and Brakes of CAR T Cell Efficacy Determined by the Tumor Immune Microenvironment

The CAR-TIME project aims to map the tumor immune microenvironment in lymphoma to enhance CAR T cell therapy efficacy and identify predictive biomarkers for patient response.

Subsidie
€ 1.499.875
2024

Projectdetails

Introduction

Cancer immunotherapies with chimeric antigen receptor (CAR) T cells have shown dramatic clinical efficacy in patients with B cell neoplasms. Thus, their clinical use is expected to increase considerably in the near future. However, for poorly understood reasons, not all patients with lymphoma benefit from these expensive therapies.

Patient Stratification

The ability to stratify patients into probable responders vs. non-responders prior to immunotherapy will improve treatment efficacy, limit patient exposure to adverse effects, and mitigate the significant economic costs associated with these therapies.

Tumor Immune Microenvironment

We and others have previously demonstrated that effective antitumoral immunity requires complex, spatially coordinated interactions between different cellular elements within the tumor immune microenvironment (TIME).

Characteristics of TIME

There is evidence that patient response to immunotherapy is attributed to specific characteristics of the TIME, such as:

  1. The composition of immune cell types
  2. Spatial arrangement of these cells
  3. Activation states of immune cells

Therefore, a better understanding of the TIME, and of how immunotherapies come into effect in live, intact human tissues, is critical for the selection of successful immunotherapies for our patients.

Project Aim

The overarching aim of the CAR-TIME project is to explore and visualize the cellular and molecular mechanisms of CAR T cell efficacy in lymphoma, determined by CAR T cell interactions with the TIME.

Methodology

This shall be achieved by:

  • Creating a high-dimensional map of the TIME of diffuse large B cell lymphoma
  • Performing live tissue cultures treated with immunotherapies
  • Establishing a novel live cell microscopy platform to interrogate intact human lymphoma tissue treated with CAR T cells

Research Techniques

Drug perturbations, multidimensional imaging technologies, RNA sequencing, and integrative bioinformatics analysis will illuminate mechanisms of therapy response vs. resistance, reveal novel predictive biomarkers, and inform future combination immunotherapy strategies to improve patient outcomes.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.875
Totale projectbegroting€ 1.499.875

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • EBERHARD KARLS UNIVERSITAET TUEBINGENpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Leveraging the impact of gut microbes to advance the efficacy of CAR-T cell immunotherapy.

This project aims to enhance CAR-T cell therapy for B cell malignancies by investigating the gut microbiome's role in treatment efficacy and developing personalized interventions.

€ 1.999.819
ERC Proof of...

Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors

CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.

€ 150.000
ERC Advanced...

Targeting of glycosylation pathways to empower CAR-T therapy of solid tumors.

This project aims to enhance CAR-T cell therapy for solid tumors by engineering glycosylation pathways to improve immune response and long-term persistence against immunosuppressive environments.

€ 2.498.435
ERC Consolid...

Unlocking a T cell-mediated Immune response in therapy-challenged Tumors

UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.

€ 2.000.000
ERC Starting...

Polyclonal anti-tumor immunity by engineered human T cells

This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.

€ 1.812.500

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment

CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.

€ 2.733.931
EIC Pathfinder

Bottom-up manufacturing of artificial anti-tumor T cells

The project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment.

€ 3.391.796
EIC Pathfinder

FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORS

T-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients.

€ 4.387.825
EIC Transition

Next generation, off-the-shelf, non fratricide-directed, CAR immunotherapy for relapse/refractory T-cell acute lymphoblastic leukemia

The project aims to develop a cost-effective immunotherapy for R/R T-ALL by dual targeting specific antigens using scalable, off-the-shelf CORD-GDT cells to improve patient outcomes.

€ 2.497.500