Disentangling psychological interventions for mental disorders into a taxonomy of active ingredients
This project aims to enhance treatment efficacy for severe mental disorders by analyzing psychological interventions' components, creating a taxonomy, and developing a decision support system for personalized care.
Projectdetails
Introduction
Severe mental disorders, like psychotic or borderline personality disorders, are associated with higher mortality, both all-cause and by suicide. Psychological interventions, usually combined with other treatments, are effective options, though less so than for common mental disorders.
Research Gaps
However, mechanisms and predictors of treatment response, key for improving effectiveness and for precision medicine, are mostly unknown. The greatest barrier is our approach to psychological interventions as brands or categories, without knowledge of active ingredients, and particularly of which ingredients are effective.
Proposal Overview
The proposal will bridge this gap by dismantling psychological interventions into components, integrating these into a taxonomy, and radically reevaluating treatment efficacy and personalization from a novel perspective: components instead of brands and categories.
Methodology
- Data Collection: We will use recent network meta-analyses to assemble a large collection of psychological interventions for severe mental disorders (psychotic, bipolar, substance use, eating, and borderline personality).
- Protocol Retrieval: We will retrieve intervention protocols and extract components iteratively, via multiple rounds of independent coding.
- Taxonomy Integration: We will integrate components in a cross-disorder, comprehensive taxonomy, validated in Delphi surveys and a consensus meeting.
Reevaluation of Interventions
We will reevaluate psychological interventions for severe disorders through component network meta-analysis, to identify the most beneficial ingredients and combinations for symptoms, functioning, and attrition outcomes.
Personalization of Treatment
We will reassess treatment personalization through a component-based lens using individual patient data for psychosis.
Clinical Decision Support System
Finally, we will develop an open clinical decision support system, where users can assemble and dismantle interventions, visualizing efficacy gain or loss.
Conclusion
The proposal is a systematic and reproducible approach to advance a perspective shift from treatment brands to active ingredients, potentially upending psychotherapy research.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.497.500 |
Totale projectbegroting | € 1.497.500 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PADOVApenvoerder
- UNIVERSITA DEGLI STUDI DI PAVIA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Subtype as a key to reduce heterogeneity of treatment effects in major depressive disorderSUBTREAT aims to enhance treatment for major depressive disorder by identifying subtypes through advanced data science, exploring their causes, and developing predictive algorithms for tailored therapies. | ERC Starting... | € 1.500.000 | 2022 | Details |
Improving Digital Mental Health Interventions: ENGAGEment as Mechanism of ImpactENGAGE aims to enhance Digital Mental Health Interventions by developing a comprehensive understanding of real-time engagement to improve individual outcomes through personalized strategies. | ERC Starting... | € 1.499.590 | 2023 | Details |
New molecular understanding of mental disorders through deep cerebrospinal fluid phenotypingThis project aims to revolutionize psychiatry by conducting unprecedented deep phenotyping of cerebrospinal fluid to identify novel therapeutic targets and enhance understanding of mental disorders. | ERC Starting... | € 1.499.070 | 2024 | Details |
Mental illness, substance use, and cardiovascular disease: Unravelling causal relationshipsThis project aims to clarify the bidirectional relationships between serious mental illness and its comorbidities using innovative epidemiological methods to enhance prevention and treatment strategies. | ERC Starting... | € 1.500.000 | 2023 | Details |
Gut microbiome-mediated activities of psychotropic drugsThis project aims to explore the role of gut microbiomes in the efficacy and side effects of psychotropic drugs, potentially revolutionizing personalized drug therapy for mental illnesses. | ERC Starting... | € 1.497.033 | 2024 | Details |
Subtype as a key to reduce heterogeneity of treatment effects in major depressive disorder
SUBTREAT aims to enhance treatment for major depressive disorder by identifying subtypes through advanced data science, exploring their causes, and developing predictive algorithms for tailored therapies.
Improving Digital Mental Health Interventions: ENGAGEment as Mechanism of Impact
ENGAGE aims to enhance Digital Mental Health Interventions by developing a comprehensive understanding of real-time engagement to improve individual outcomes through personalized strategies.
New molecular understanding of mental disorders through deep cerebrospinal fluid phenotyping
This project aims to revolutionize psychiatry by conducting unprecedented deep phenotyping of cerebrospinal fluid to identify novel therapeutic targets and enhance understanding of mental disorders.
Mental illness, substance use, and cardiovascular disease: Unravelling causal relationships
This project aims to clarify the bidirectional relationships between serious mental illness and its comorbidities using innovative epidemiological methods to enhance prevention and treatment strategies.
Gut microbiome-mediated activities of psychotropic drugs
This project aims to explore the role of gut microbiomes in the efficacy and side effects of psychotropic drugs, potentially revolutionizing personalized drug therapy for mental illnesses.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Psylaris TherapyPsylaris onderzoekt de haalbaarheid van een stand-alone VR-applicatie voor blended-care cognitieve gedragstherapie. | Mkb-innovati... | € 20.000 | 2023 | Details |
Digitale transformatie data acquisitie en verwerking van klinische onderzoekenTherapySelector ontwikkelt een AI-gestuurde oplossing om het selectieproces van medische publicaties te versnellen en te digitaliseren, met als doel persoonsgericht medicatievoorschrijven te verbeteren. | Mkb-innovati... | € 20.000 | 2021 | Details |
Guided self-care applicatie op basis van transdiagnostische behandeling in de ggzBirdt Group onderzoekt de haalbaarheid van een digitale applicatie voor het transdiagnostische netwerkmodel in de ggz, zodat patiënten zelfstandig hun behandeling en zorgpad kunnen beheren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Focused Ultrasound Personalized Therapy for the Treatment of Depression (UPSIDE)The UPSIDE project aims to develop a minimally invasive hybrid neurotechnology for targeted brain stimulation and biomarker monitoring to enhance treatment for Treatment-Resistant Depression. | EIC Pathfinder | € 4.149.921 | 2022 | Details |
Psylaris Therapy
Psylaris onderzoekt de haalbaarheid van een stand-alone VR-applicatie voor blended-care cognitieve gedragstherapie.
Digitale transformatie data acquisitie en verwerking van klinische onderzoeken
TherapySelector ontwikkelt een AI-gestuurde oplossing om het selectieproces van medische publicaties te versnellen en te digitaliseren, met als doel persoonsgericht medicatievoorschrijven te verbeteren.
Guided self-care applicatie op basis van transdiagnostische behandeling in de ggz
Birdt Group onderzoekt de haalbaarheid van een digitale applicatie voor het transdiagnostische netwerkmodel in de ggz, zodat patiënten zelfstandig hun behandeling en zorgpad kunnen beheren.
Focused Ultrasound Personalized Therapy for the Treatment of Depression (UPSIDE)
The UPSIDE project aims to develop a minimally invasive hybrid neurotechnology for targeted brain stimulation and biomarker monitoring to enhance treatment for Treatment-Resistant Depression.