Data Aware efficient models of the urbaN microclimaTE
DANTE aims to develop fast, reliable urban microclimate simulation methods using machine learning and model order reduction to support sustainable city planning by 2050.
Projectdetails
Introduction
The share of the world’s population living in cities is rapidly increasing, and it is expected to rise to 80% by 2050. It is therefore crucial to develop new efficient and reliable methods to model the urban microclimate. In fact, these models can support urban planners and policymakers to create more comfortable and sustainable cities.
Challenges in Current Methodologies
High computational requirements limit existing numerical methodologies. DANTE fits in this context and aims to create a new paradigm for fast and reliable numerical simulations, bridging the fields of model order reduction, machine learning, and data assimilation.
Research Team Formation
The idea is to create a research team to answer many unresolved questions in model order reduction for complex and real-life urban microclimate simulations. Particular emphasis will be given to advanced machine learning tools, which incorporate physics knowledge, aiming to improve the accuracy, interpretability, and reliability of predictive models.
Identified Tasks
The identified tasks cover a wide range of different topics:
- Dimensionality reduction of the solution manifold in problems governed by complex physical principles.
- Uncertainty quantification.
- Data assimilation.
- Inverse modeling.
Methodological Innovations
The new tools will have the agility of data-driven methods in complex nonlinear settings and the physical rigor of projection-based methods with quantified errors.
Impact and Applications
The developed methods will significantly impact digital transformation, enabling digital twins of urban environments. Possible applications include, but are not limited to:
- Urban air pollution
- Heat island modeling
- Wind loads on buildings
- Inverse modeling approaches
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.450.560 |
Totale projectbegroting | € 1.450.560 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- SCUOLA SUPERIORE DI STUDI UNIVERSITARI E DI PERFEZIONAMENTO S ANNApenvoerder
- Universita' degli Studi di Urbino Carlo Bo
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Compressed Sensing for Climate: A Novel Approach to Localize, Quantify and Characterize Urban Greenhouse Gas EmittersCoSense4Climate aims to revolutionize GHG emission monitoring using compressed sensing to accurately locate and quantify unknown emitters, enhancing global climate change mitigation efforts. | ERC Consolid... | € 1.999.848 | 2023 | Details |
The Model City. Drivers and Mechanisms of Long-term Urban Evolution and ResilienceThe Model City project aims to analyze historical urban evolution and resilience by comparing diverse past cities to identify factors influencing their long-term survival and collapse. | ERC Starting... | € 1.498.511 | 2024 | Details |
Advanced Numerics for Uncertainty and Bayesian Inference in ScienceANUBIS aims to enhance quantitative scientific analysis by unifying probabilistic numerical methods with machine learning and simulation, improving efficiency and uncertainty management in data-driven insights. | ERC Consolid... | € 1.997.250 | 2024 | Details |
Debiasing the uncertainties of climate stabilization ensemblesEUNICE aims to enhance climate stabilization assessments by quantifying uncertainties, consolidating model ensembles, and improving decision-making frameworks for resilient recommendations. | ERC Consolid... | € 1.995.000 | 2022 | Details |
Creating water-smart landscapesThe project aims to develop a machine learning framework to identify optimal land management scenarios for nature-based solutions that reduce agricultural nutrient runoff in priority areas. | ERC Consolid... | € 1.909.500 | 2024 | Details |
Compressed Sensing for Climate: A Novel Approach to Localize, Quantify and Characterize Urban Greenhouse Gas Emitters
CoSense4Climate aims to revolutionize GHG emission monitoring using compressed sensing to accurately locate and quantify unknown emitters, enhancing global climate change mitigation efforts.
The Model City. Drivers and Mechanisms of Long-term Urban Evolution and Resilience
The Model City project aims to analyze historical urban evolution and resilience by comparing diverse past cities to identify factors influencing their long-term survival and collapse.
Advanced Numerics for Uncertainty and Bayesian Inference in Science
ANUBIS aims to enhance quantitative scientific analysis by unifying probabilistic numerical methods with machine learning and simulation, improving efficiency and uncertainty management in data-driven insights.
Debiasing the uncertainties of climate stabilization ensembles
EUNICE aims to enhance climate stabilization assessments by quantifying uncertainties, consolidating model ensembles, and improving decision-making frameworks for resilient recommendations.
Creating water-smart landscapes
The project aims to develop a machine learning framework to identify optimal land management scenarios for nature-based solutions that reduce agricultural nutrient runoff in priority areas.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Holistische op AI gebaseerde software voor stedenbouwHet project ontwikkelt een AI-gebaseerde stadsontwikkelingsadviesdienst om complexe stedelijke processen te integreren en dynamische ontwerpen voor hoogwaardige steden te genereren. | Mkb-innovati... | € 19.700 | 2022 | Details |
Betrouwbaardere en nauwkeurigere verkeersmodellen met big dataMezuro B.V. en DAT.Mobility B.V. ontwikkelen innovatieve data-analyse technieken voor nauwkeurige verkeersmodellen, gericht op het verbeteren van verkeersmanagement en smart mobility. | Mkb-innovati... | € 199.710 | 2016 | Details |
Holistische op AI gebaseerde software voor stedenbouw
Het project ontwikkelt een AI-gebaseerde stadsontwikkelingsadviesdienst om complexe stedelijke processen te integreren en dynamische ontwerpen voor hoogwaardige steden te genereren.
Betrouwbaardere en nauwkeurigere verkeersmodellen met big data
Mezuro B.V. en DAT.Mobility B.V. ontwikkelen innovatieve data-analyse technieken voor nauwkeurige verkeersmodellen, gericht op het verbeteren van verkeersmanagement en smart mobility.