Conical liquid noble gas apparatus for neutrino physics.
The project aims to develop the COLINA conical TPC for enhanced detection of coherent elastic neutrino-nucleus scattering, maximizing sensitivity to new physics with smaller, efficient detectors.
Projectdetails
Introduction
Coherent elastic neutrino-nucleus scattering (CENS) is a recently demonstrated novel process of neutrino interaction. It provides numerous avenues to advance our sensitivity to new physics beyond the Standard Model and enables a miniaturization of otherwise massive neutrino detectors, opening up the possibility of technological applications.
Project Proposal
The development of an innovative single-phase noble liquid time projection chamber (TPC) to detect CENS is proposed. Two distinct ideas are combined to maximize the potential of the technique:
- The signal will be amplified through electroluminescence (EL).
- The TPC will be shaped as a conical frustum.
Technical Details
Single-phase EL is unaffected by charge trapping, which is the major deterrent of dual-phase noble liquid TPCs for CENS searches at shallow depths. However, it requires extremely high electric fields. Such fields can be reached by using very thin wires of m-scale diameter. This is an impediment to producing large amplification regions.
Common TPC shapes are thus limited in size and target mass. The conical shape allows for maximizing the mass by drifting all charges towards a small amplification region at the smaller circle of the cone. This scheme allows for good coverage with few sensors.
Implementation
COLINA, a conical TPC capable of holding 50 kg of LXe, will be developed and deployed at the largest spallation neutrino source, the European Spallation Source. Simulations point to a conservative energy threshold as low as 0.525 keVnr.
The detector will allow for operation with different noble gases. The increase in density of liquid-phase, compared to gaseous-phase, results in a large CENS rate with rather small detectors. In fact, COLINA will produce the largest CENS statistics in all the considered isotopes, Xe, Kr, and Ar, and will do so in unexplored energy regions for the process, where the physics relevance is maximal.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.659.083 |
Totale projectbegroting | € 1.659.083 |
Tijdlijn
Startdatum | 1-9-2025 |
Einddatum | 31-8-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
- FUNDACION DONOSTIA INTERNATIONAL PHYSICS CENTER
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Gaseous detectors for neutrino physics at the European Spallation SourceThis project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model. | ERC Starting... | € 1.496.205 | 2022 | Details |
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation SourceThe project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model. | ERC Advanced... | € 2.795.294 | 2022 | Details |
A revolutionary archaeological Pb observatory for astrophysical neutrino sourcesRES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy. | ERC Consolid... | € 2.661.005 | 2023 | Details |
Why a new neutrino telescope? Because we can.NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe. | ERC Advanced... | € 3.169.384 | 2022 | Details |
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectorsDANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries. | ERC Consolid... | € 2.587.500 | 2023 | Details |
Gaseous detectors for neutrino physics at the European Spallation Source
This project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model.
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation Source
The project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model.
A revolutionary archaeological Pb observatory for astrophysical neutrino sources
RES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy.
Why a new neutrino telescope? Because we can.
NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectors
DANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel Opaque Scintillator Technology for Nuclear Industry Imaging based on Anti-Matter DetectionDeveloping a novel neutrino-based technology for direct monitoring of nuclear reactions in power plant cores, enhancing safety and operational efficiency in the nuclear industry. | EIC Pathfinder | € 5.722.533 | 2022 | Details |
Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino ResearchUNICORN aims to develop advanced nanocomposite scintillator detectors using engineered nanomaterials to enhance radiation detection for critical applications in science and security. | EIC Pathfinder | € 2.995.000 | 2023 | Details |
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
Novel Opaque Scintillator Technology for Nuclear Industry Imaging based on Anti-Matter Detection
Developing a novel neutrino-based technology for direct monitoring of nuclear reactions in power plant cores, enhancing safety and operational efficiency in the nuclear industry.
Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino Research
UNICORN aims to develop advanced nanocomposite scintillator detectors using engineered nanomaterials to enhance radiation detection for critical applications in science and security.
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.