A revolutionary archaeological Pb observatory for astrophysical neutrino sources
RES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy.
Projectdetails
Introduction
One of the most energetic events in the Universe is the core-collapse Supernova (SN) where almost all the star's binding energy is released as neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse and the neutrino properties. Currently, astroparticle physics is in need of SN observations and of a detection technique highly sensitive to all neutrino flavors.
Project Overview
RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources by deploying the first array of cryogenic detectors made from archaeological Pb.
Detection Mechanism
Neutrino detection in RES-NOVA is facilitated by the newly discovered Coherent Elastic neutrino-Nucleus Scattering (CEvNS). It enables the first measurement of the full SN neutrino signal, eradicating the uncertainties related to flavor oscillations.
Advantages of CEvNS
To fully exploit the advantages of CEvNS, RES-NOVA ennobles Pb from being a passive shielding to the most sensitive detector component. Pb has the highest cross-section, 10^4 times higher than all used detection channels, enabling the deployment of a cm-scale neutrino observatory.
Innovative Approach
The unconventional approach of RES-NOVA is to use ultra-pure archaeological Pb and run it as a cryogenic detector with:
- Low-energy threshold (<1 keV)
- Unprecedented background (<0.001 c/ton/keV/s)
These features also open new opportunities in multi-messenger astronomy, Dark Matter, and neutrino property studies. The success of my pioneer work in operating archaeological Pb-based cryogenic detectors is pivotal for RES-NOVA realization.
Survey Capabilities
RES-NOVA will survey 90% of the potential galactic SNe, with only a total detector volume of (30 cm)^3. Future detector upgrades will enhance our SN sensitivity into the uncharted territory >1 Mpc and increase the SN observation rate.
Future Prospects
RES-NOVA has the potential to lay the foundations for a future generation of European neutrino telescopes, as all its SN neutrino detectors are currently going offline.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.661.005 |
Totale projectbegroting | € 2.661.005 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCApenvoerder
- ISTITUTO NAZIONALE DI FISICA NUCLEARE
- ISTITUTO NAZIONALE DI FISICA NUCLEARE
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation SourceThe project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model. | ERC Advanced... | € 2.795.294 | 2022 | Details |
Optimal Particle identification Of Single Site events with Underground MKIDs detectorsOPOSSUM aims to enhance the detection of neutrinoless double-beta decay using advanced sensors in CUORE crystals, significantly reducing background noise to improve sensitivity and understanding of neutrinos. | ERC Starting... | € 1.497.500 | 2025 | Details |
Why a new neutrino telescope? Because we can.NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe. | ERC Advanced... | € 3.169.384 | 2022 | Details |
Optimization of Radio Detectors of Ultra-High-Energy Neutrinos through Deep Learning and Differential ProgrammingThis project aims to enhance UHE neutrino detection rates and event quality using deep learning, potentially doubling detection efficiency for the IceCube-Gen2 observatory. | ERC Starting... | € 1.738.721 | 2024 | Details |
Gaseous detectors for neutrino physics at the European Spallation SourceThis project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model. | ERC Starting... | € 1.496.205 | 2022 | Details |
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation Source
The project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model.
Optimal Particle identification Of Single Site events with Underground MKIDs detectors
OPOSSUM aims to enhance the detection of neutrinoless double-beta decay using advanced sensors in CUORE crystals, significantly reducing background noise to improve sensitivity and understanding of neutrinos.
Why a new neutrino telescope? Because we can.
NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.
Optimization of Radio Detectors of Ultra-High-Energy Neutrinos through Deep Learning and Differential Programming
This project aims to enhance UHE neutrino detection rates and event quality using deep learning, potentially doubling detection efficiency for the IceCube-Gen2 observatory.
Gaseous detectors for neutrino physics at the European Spallation Source
This project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel Opaque Scintillator Technology for Nuclear Industry Imaging based on Anti-Matter DetectionDeveloping a novel neutrino-based technology for direct monitoring of nuclear reactions in power plant cores, enhancing safety and operational efficiency in the nuclear industry. | EIC Pathfinder | € 5.722.533 | 2022 | Details |
Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino ResearchUNICORN aims to develop advanced nanocomposite scintillator detectors using engineered nanomaterials to enhance radiation detection for critical applications in science and security. | EIC Pathfinder | € 2.995.000 | 2023 | Details |
NEXT GENERATION IMAGING FOR REAL-TIME DOSE VERIFICATION ENABLING ADAPTIVE PROTON THERAPYThe NOVO project aims to develop a groundbreaking real-time dose verification technology for proton radiotherapy, enhancing personalized cancer treatment and improving patient outcomes. | EIC Pathfinder | € 3.759.489 | 2024 | Details |
Novel Opaque Scintillator Technology for Nuclear Industry Imaging based on Anti-Matter Detection
Developing a novel neutrino-based technology for direct monitoring of nuclear reactions in power plant cores, enhancing safety and operational efficiency in the nuclear industry.
Hybrid Nanocomposite Scintillators for Transformational Breakthroughs in Radiation Detection and Neutrino Research
UNICORN aims to develop advanced nanocomposite scintillator detectors using engineered nanomaterials to enhance radiation detection for critical applications in science and security.
NEXT GENERATION IMAGING FOR REAL-TIME DOSE VERIFICATION ENABLING ADAPTIVE PROTON THERAPY
The NOVO project aims to develop a groundbreaking real-time dose verification technology for proton radiotherapy, enhancing personalized cancer treatment and improving patient outcomes.