CO2 Fixation and Energy Conservation in the ancient Wood-Ljungdahl Pathway

The Two-CO2-One project aims to understand CO2 fixation and energy conservation in acetogenic bacteria and methanogenic archaea to develop improved microbes for CO2 sequestration and industrial applications.

Subsidie
€ 1.498.863
2023

Projectdetails

Introduction

Carbon dioxide (CO2) receives a lot of attention as a greenhouse gas that promotes human-induced climate change. On the other hand, CO2 is also the starting point for the production of virtually all biomass on our planet. Therefore, nature has developed sophisticated methods to fix CO2 and make it available for biochemical reactions.

Biological CO2 Fixation Pathways

Of all known biological CO2 fixation pathways, the Wood-Ljungdahl pathway (WLP) is the simplest way to fix two CO2 molecules to form acetyl-CoA, the key metabolic intermediate for biomass formation. It is the only pathway directly related to energy conservation and is regarded to be the most ancient.

Project Objectives

The Two-CO2-One project aims to gain a comprehensive structural and mechanistic understanding of CO2 fixation and energy conservation in acetogenic bacteria and methanogenic archaea. These ecologically highly relevant organisms can live under conditions of extreme energy limitation in the absence of oxygen and feed exclusively on CO2 and hydrogen.

Methodology

I will elucidate how these species fix CO2 and conserve energy through their WLP by using the innovative structural approach of redox-guided cryogenic electron microscopy (Cryo-EM) to study the oxygen-sensitive metalloprotein machinery of the WLP. The mechanistic insights gained will be challenged by microbiological and genetic approaches in these anaerobic, non-standard model organisms.

Implications for Biotechnology

Using autotrophic organisms that can sequester gaseous CO2 to produce biogas or ethanol from abundant waste gas resources is one way to reduce the human carbon footprint. Therefore, the Two-CO2-One project will not only lead to a deeper understanding of the unique mechanistic principles of WLP, but also provide new perspectives for developing biotechnological applications based on improved microbes that capture and sequester CO2 to produce industrially relevant chemicals and to combat human-induced climate change.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.498.863
Totale projectbegroting€ 1.498.863

Tijdlijn

Startdatum1-5-2023
Einddatum30-4-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • PHILIPPS UNIVERSITAET MARBURGpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Systematic analyses and rational engineering of fast CO2 fixation pathways in living cells

FASTFIX aims to develop a novel method for quantifying enzyme kinetics in living E. coli to identify and engineer efficient synthetic CO2 fixation pathways, enhancing biotechnological production and CO2 mitigation.

€ 1.499.980
ERC Synergy ...

Relicts of Ancient Cellular Biochemistry in High-CO2 Subsurface Ecosystems

This project aims to study microbial life in CO2-rich subsurface environments to uncover ancient carbon fixation pathways and their implications for microbial evolution and carbon cycling.

€ 11.511.103
ERC Consolid...

Next-generation engineering of gas-fermenting cell factories through large-scale systems-level maps

GENESYS aims to engineer advanced gas-fermenting acetogen cell factories by enhancing understanding of their genetics and metabolism through CRISPR-based strain libraries and high-throughput analyses.

€ 2.330.500
ERC Consolid...

An anaerobic native approach to shine Light on C1-cycling biochemistry using Environmental microbial biomass.

EnLightEn aims to characterize uncultured anaerobic archaea and their enzymes using native biomass to uncover their role in carbon cycling and microbial biogeochemistry.

€ 2.000.000
ERC Starting...

Unraveling novel Archaeal Metabolic Pathways impacting Greenhouse Gas Emissions

This project aims to characterize novel enzyme systems in methanogenic archaea to understand their metabolic capabilities and impact on greenhouse gas emissions, particularly methane and CO2.

€ 1.485.968

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomers

ECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks.

€ 3.776.701
Mkb-innovati...

Biolyse reactor en CO2-fixatie uit afvalstromen

Het project onderzoekt de ontwikkeling van een kleinschalige biolyse reactor voor CO2-fixatie en productie van waardevolle stoffen uit afval.

€ 20.000
EIC Pathfinder

TUNGSTEN BIOCATALYSIS – HEAVY METAL ENZYMES FOR SUSTAINABLE INDUSTRIAL BIOCATALYSIS

This project aims to develop a new W-cofactor biosynthesis pathway in E. coli to produce tungsten-containing enzymes for sustainable chemical processes, enabling efficient CO2 reduction and cosmetic ingredient production.

€ 2.430.574
Demonstratie...

Carbon Capture and Utilization (CCU) door productie van eiwit uit CO2 en groene stroom

Dit project test een innovatieve methode voor de productie van microbiële eiwitten uit CO2 en hernieuwbare energie, met als doel lagere emissies en minder landgebruik.

€ 201.194
Mkb-innovati...

“Aerocycle” a new way for CO2 gas removal

Het project ontwikkelt een natuurlijke methode voor CO2-afvang via enhanced weathering, wat leidt tot negatieve emissies, schonere lucht en lagere energiekosten.

€ 20.000