Chirality-sensitive Nuclear Magnetoelectric Resonance

This project aims to develop a novel NMR spectroscopy method to directly identify chiral molecules using enhanced chirality-sensitive signals, enabling applications in chemistry, biochemistry, and pharmaceuticals.

Subsidie
€ 1.500.000
2022

Projectdetails

Introduction

This project lifts the blindness of nuclear magnetic resonance (NMR) spectroscopy to molecular chirality. First, we will observe chirality-sensitive magnetoelectric effects. Based on these effects, a new branch of molecular spectroscopy (abbreviated as NMER) is proposed, which will enable us to identify enantiomers directly without requiring chemical shift reagents or chiral solvents.

Methodology

Direct chiral NMR effects are very small and have not been previously detected, but this proposal will utilize several unique new strategies, such as hyperpolarization techniques and novel instrumentation, to dramatically enhance the chirality-sensitive NMR signals. This new approach is necessary to observe chirality-sensitive effects in solution at frequencies lower than 10 GHz.

Applications

This methodology permits:

  1. The direct discrimination of chiral molecules.
  2. Selective magnetic resonance imaging (MRI) of chiral molecules.
  3. Determination of the absolute configuration of the molecule.

In contrast to standard methods used in NMR, it does not require chemical modification of the sample. Consequently, it has many potential application fields, including:

  • Analytical chemistry (determination of enantiopurity, resolution of complex mixtures of chiral substances).
  • Biochemistry (studies of interactions between chiral molecules).
  • Pharmaceutical science (diagnostic imaging, studies of the pharmaceutical mechanism of action).

Enhanced Sensitivity

At the same time, the new methodology will dramatically increase the detection sensitivity, rendering it possible to:

  1. Record NMR spectra from molecules in the gas phase under conditions of low partial pressure.

Conclusion

This unique form of spectroscopy will be used as an analytical tool and will permit studies of chiral molecules interactions. In combination with state-of-the-art quantum computations, it will provide valuable data on NMR tensors and allow models of fundamental interactions involving chirality to be tested on the molecular scale.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-7-2022
Einddatum30-6-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIWERSYTET WARSZAWSKIpenvoerder

Land(en)

Poland

Vergelijkbare projecten binnen European Research Council

ERC Proof of...

Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imaging

This project aims to develop a modular insert for conventional NMR and MRI spectrometers to enhance sensitivity through in-situ polarisation of longer-lived nuclei using radiation-detected NMR.

€ 150.000
ERC Starting...

Controlling chirality in atomically thin quantum electronic materials

CHIROTRONICS aims to experimentally observe and control chiral responses in atomically thin quantum materials to develop innovative chiral technologies for diverse applications.

€ 1.799.250
ERC Starting...

ELEctrically ConTRolled magnetic Anisotropy

ELECTRA aims to develop a novel technique to control the Spin-Electric effect in magnetic molecules, enhancing energy-efficient device design for information technology.

€ 1.498.784
ERC Starting...

Hyperpolarized Magnetic Resonance at the point-of-care

HYPMET aims to revolutionize personalized cancer treatment by developing a compact NMR technology for real-time monitoring of metabolic pathways and body fluid analyses using enhanced hyperpolarization methods.

€ 1.499.968
ERC Advanced...

Ultrafast molecular chirality: twisting light to twist electrons on ultrafast time scale

The ULISSES project aims to develop efficient all-optical methods to study and control chiral molecular interactions and electron dynamics using tailored laser polarization techniques.

€ 2.476.743

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems

This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.

€ 2.994.409
EIC Transition

Hyperpolarized NMR made simple

MAGSENSE aims to enhance NMR sensitivity by using standard hydrogen molecules as polarization batteries, enabling ultrasensitive analysis without modifying existing equipment, thus revolutionizing various fields.

€ 2.451.913
EIC Pathfinder

Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits

CHIRALFORCE aims to revolutionize enantiomer separation for drug discovery using silicon-based integrated waveguides and chiral optical forces for rapid, cost-effective processing.

€ 3.263.726
EIC Pathfinder

Twisted nanophotonic technology for integrated chiroptical sensing of drugs on a chip

TwistedNano aims to revolutionize drug discovery by developing integrated nanophotonic devices for ultrasensitive chiroptical spectroscopy on microfluidic chips, enhancing chiral sensing and diagnostics.

€ 3.679.925