Tuning Immune T cells for cancer therapy
Tune-IT aims to enhance adoptive cell therapy by using a novel polymeric platform to prevent T cell exhaustion, ensuring improved efficacy and commercial viability for cancer treatment.
Projectdetails
Introduction
Adoptive cell therapy (ACT) recently became an important treatment modality for cancer. Since 2017, several chimeric antigen receptor (CAR)-T cell therapies have been approved by the FDA/EMA, and more are expected to receive approval for clinical use. Currently, more than 250 clinical ACT trials are ongoing. Already in 2021, the market size was >$1 billion and is expected to grow tremendously to >$25 billion by 2030.
Challenges in ACT
ACT products require extensive ex vivo manipulation and expansion of patient-derived T cells prior to reinfusion back into patients to attack cancer cells. Unfortunately, T cell exhaustion and loss of function after reinfusion form a major problem in currently used ex vivo expansion protocols.
The Solution
Dedicated tuning of T cells during ex vivo expansion is essential to preserve their anti-cancer function and prevent exhaustion. In the body, T cells are activated by antigen presenting cells (APC) to initiate an immune response. As patient-derived APC are often immunosuppressed, much effort is spent on developing 'artificial antigen presenting cells' (aAPC) to expand immune cells for ACT.
We developed a unique polymeric aAPC platform, termed immunofilaments, that provides a highly flexible, scalable, GMP compliant, and affordable solution for robust production of T cells for ACT. Our initial findings indicate that we can diminish T cell exhaustion and outcompete products currently used in the clinic for ex vivo T cell expansion.
Project Goals
Tune-IT will validate the technical and commercial feasibility of this novel technology platform that exploits immunofilaments to significantly improve the function and longevity of ACT products in patients.
In Tune-IT, we will:
- Demonstrate that tuning of ex vivo cultured therapeutic T cells will prevent exhaustion and loss of tumor killing capacity after reinfusing T cells.
- Perform market and business case analyses to ensure commercial feasibility and market entry through Simmunext Biotherapeutics, a Radboudumc spin-off.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid TumorsCAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies. | ERC Proof of... | € 150.000 | 2022 | Details |
Polyclonal anti-tumor immunity by engineered human T cellsThis project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes. | ERC Starting... | € 1.812.500 | 2022 | Details |
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunctionDevelop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment. | ERC Proof of... | € 150.000 | 2024 | Details |
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell TherapyDevelop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors. | ERC Consolid... | € 2.501.154 | 2024 | Details |
Novel T cell therapies against lymphocytic leukaemiaCATCH aims to enhance T-cell activation in chronic lymphocytic leukaemia using CAR-T and tri-specific antibodies, while assessing commercial feasibility and developing a business strategy. | ERC Proof of... | € 150.000 | 2022 | Details |
Chimeric Antigen Receptor (CAR) T Cell Therapy For Solid Tumors
CAR-T(uning) aims to enhance CAR-T therapy for NSCLC by improving treatment persistence and reducing tumor immunosuppression, paving the way for effective, broadly applicable cancer therapies.
Polyclonal anti-tumor immunity by engineered human T cells
This project aims to enhance adoptive T cell therapies for solid tumors by engineering TCR sensitivity and safety, creating robust, antigen-agnostic immune responses to improve patient outcomes.
Generation, validation and use of a synthetic reporter of CAR T cell products function and dysfunction
Develop a synthetic reporter system to enhance T cell fitness in immunotherapy by identifying and reversing dysfunction in CAR T cells for improved cancer treatment.
Synthetic Chimeric Antigen Receptors: Hijacking Nitrenium Ions for Targeting, Therapy and Safety of Next Generation T Cell Therapy
Develop a universal synthetic CAR T cell platform using activatable nitrenium ions to enhance targeting, control T cell function, and improve efficacy against solid tumors.
Novel T cell therapies against lymphocytic leukaemia
CATCH aims to enhance T-cell activation in chronic lymphocytic leukaemia using CAR-T and tri-specific antibodies, while assessing commercial feasibility and developing a business strategy.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORST-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients. | EIC Pathfinder | € 4.387.825 | 2022 | Details |
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironmentCAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies. | EIC Pathfinder | € 2.733.931 | 2023 | Details |
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell ReprogrammingThe Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization. | EIC Transition | € 2.480.367 | 2025 | Details |
Bottom-up manufacturing of artificial anti-tumor T cellsThe project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment. | EIC Pathfinder | € 3.391.796 | 2024 | Details |
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process controlThe SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors. | EIC Pathfinder | € 1.364.281 | 2022 | Details |
FINE-TUNING T CELL NETWORKS OF EXHAUSTION BY SYNTHETIC SENSORS
T-FITNESS aims to enhance T cell therapy by preventing exhaustion through miRNA-based circuits and CRISPR/Cas editing, improving treatment efficacy for solid tumors in cancer patients.
CAR T cells Rewired to prevent EXhaustion in the tumour microenvironment
CAR T-REX aims to enhance CAR T cell efficacy against solid tumors by integrating auto-regulated genetic circuits to prevent exhaustion, using advanced gene editing and delivery technologies.
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming
The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.
Bottom-up manufacturing of artificial anti-tumor T cells
The project aims to develop Artificial T cells (ArTCells) that mimic T cell therapy's anti-tumor functions more safely and cost-effectively, using engineered Giant Unilamellar Vesicles for targeted cancer treatment.
Smart manufacturing for autologous cell therapies enabled by innovative biomonitoring technologies and advanced process control
The SMARTER project aims to develop a smart bioprocessing platform for personalized autologous cell therapies, enhancing manufacturing efficiency and enabling clinical use for solid tumors.