Topological Insulator Vertical Cavity Laser Array
The project aims to develop a scalable and efficient topological insulator VCSEL array that acts as a single coherent laser source, enhancing output power for various advanced applications.
Projectdetails
Introduction
Vertical Cavity Surface Emitting Lasers (VCSELs) are tiny semiconductor lasers, structured as pillars of few-microns diameter on a chip, emitting light from their surface. They are now the most commonly used lasers, e.g., in cell phones, car sensors, and data transmission in fiber optic networks.
Limitations of VCSELs
Though widely used, the minuscule size of VCSELs sets a stringent limit on the output power they can generate. For years, scientists have sought to enhance the power emitted by such devices through combining many tiny VCSELs and attempting to force them to act as a single coherent laser, with limited success.
Recent Breakthrough
In a recent breakthrough, which appeared in Science magazine, we presented a new scheme to force very many VCSELs to lock together and act as a single coherent laser source. Our breakthrough, a direct outcome of our ERC AdG, employs a unique geometrical arrangement of VCSELs on the chip that forces the light to move in a specific path—a photonic topological insulator platform.
Proposed Technology
We propose to capitalize on the success and construct proof of concept technology that will bring this topological insulator VCSEL array a major step towards commercialization.
Design and Construction
- We will design and construct a highly efficient VCSEL array on a novel topological platform optimized for reliability and scalability to large numbers of emitters, where all the emitters act as a single laser.
- The topological VCSEL array will be pumped electrically, operating at room temperature, and rely on quantum well optimized for emitting high power per emitter.
- We will define the topological insulator geometry with a reflectivity-modulation scheme that ensures reliability.
Anticipated Impact
Our proposed scheme, anticipated to be ready within 18 months, is scalable to a large number of VCSELs and will be a game changer in a plethora of technologies. It will pave the way to new applications that require orders of magnitude higher laser power while maintaining high coherence.
Conclusion
It can revolutionize many applications we use in daily life.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2022 |
Einddatum | 30-9-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devicesSMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices. | ERC Advanced... | € 2.496.206 | 2024 | Details |
Electrically Pumped Perovskite LasersThis project aims to develop solution-processed electrically pumped perovskite lasers by synthesizing new materials and designing innovative device structures for advanced photonics applications. | ERC Consolid... | € 1.834.375 | 2022 | Details |
Photonic Laser Integration for Metrology and Quantum SystemsLASIQ aims to develop a compact on-chip titanium-sapphire mode-locked laser for low-noise optical frequency combs, enhancing precision spectroscopy and enabling advanced metrology applications. | ERC Starting... | € 1.490.625 | 2023 | Details |
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit EngineeringLIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology. | ERC Proof of... | € 150.000 | 2022 | Details |
Rapid Programmable Photonic Integrated CircuitsThis project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency. | ERC Proof of... | € 150.000 | 2023 | Details |
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices
SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.
Electrically Pumped Perovskite Lasers
This project aims to develop solution-processed electrically pumped perovskite lasers by synthesizing new materials and designing innovative device structures for advanced photonics applications.
Photonic Laser Integration for Metrology and Quantum Systems
LASIQ aims to develop a compact on-chip titanium-sapphire mode-locked laser for low-noise optical frequency combs, enhancing precision spectroscopy and enabling advanced metrology applications.
LIQuid-crystal enabled Universal Optical Reconfigurable Integrated Circuit Engineering
LIQUORICE aims to develop a programmable photonic processor for rapid prototyping in diverse applications, enhancing innovation and measurement capabilities in photonics technology.
Rapid Programmable Photonic Integrated Circuits
This project aims to develop programmable photonic integrated circuits using atomically thin semiconductors for enhanced performance in speed and energy efficiency.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Novel Semiconductor Lasers for the Industrial Quantum LeapVexlum aims to revolutionize industrial quantum technologies by developing a high-power, low-noise laser through vertically integrated manufacturing, enhancing reliability and scalability for market adoption. | EIC Accelerator | € 2.425.437 | 2024 | Details |
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with LightCIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications. | EIC Pathfinder | € 2.548.532 | 2024 | Details |
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERSSUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices. | EIC Pathfinder | € 3.600.937 | 2024 | Details |
Frequency-agile lasers for photonic sensingFORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs. | EIC Transition | € 1.966.218 | 2023 | Details |
HIGH-EFFICIENCY HIGH-POWER LASER BEAMING IN-SPACE SYSTEMS BASED ON SICRePowerSiC aims to develop a high-efficiency laser power converter using silicon carbide to enhance wireless power transfer, achieving over 80% efficiency and significantly higher power density for remote systems. | EIC Pathfinder | € 3.999.997 | 2024 | Details |
Novel Semiconductor Lasers for the Industrial Quantum Leap
Vexlum aims to revolutionize industrial quantum technologies by developing a high-power, low-noise laser through vertically integrated manufacturing, enhancing reliability and scalability for market adoption.
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light
CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERS
SUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices.
Frequency-agile lasers for photonic sensing
FORTE aims to develop a scalable, high-performance, photonic integrated circuit-based laser technology for fiber sensing and FMCW LiDAR, enhancing manufacturing and reducing costs.
HIGH-EFFICIENCY HIGH-POWER LASER BEAMING IN-SPACE SYSTEMS BASED ON SIC
RePowerSiC aims to develop a high-efficiency laser power converter using silicon carbide to enhance wireless power transfer, achieving over 80% efficiency and significantly higher power density for remote systems.