Electrically Pumped Perovskite Lasers
This project aims to develop solution-processed electrically pumped perovskite lasers by synthesizing new materials and designing innovative device structures for advanced photonics applications.
Projectdetails
Introduction
Electrically pumped lasers are considered a holy grail in the field of optoelectronics. Despite the success of lasers based on expensive epitaxially grown semiconductors, low-cost solution-processed semiconductors provide new opportunities to significantly expand the applications of lasers.
Opportunities with Low-Cost Semiconductors
On one hand, low-cost and scalable deposition can meet the increasing demand for using lasers in consumer electronics. On the other hand, solution-processed semiconductors can be easily processed into thin films, providing great promise to develop thin-film lasers which are required for highly integrated photonics chips in advanced applications.
Metal Halide Perovskites
A superstar in the family of solution-processed semiconductors is metal halide perovskites, which have shown great success in a range of optoelectronic applications. Especially, recent breakthroughs on optically pumped perovskite lasers and high-performance perovskite light-emitting diodes indicate great potential for developing perovskites into a new generation of materials for electrically pumped lasers.
Project Goals
This project has the ambitious goal to realize solution-processed electrically pumped perovskite lasers. I will take a holistic approach, where novel concepts are proposed to address critical challenges in the development of perovskite lasers.
Development of Gain Media
- Both type-I and type-II perovskite quantum well heterostructures, which utilize fundamentally different mechanisms to reach low thresholds, will be developed as the gain media.
- Edge-emitting devices based on these new perovskite gain media will then be coupled into rationally designed cavities for lasing actions.
Research Focus
At the core of the research is the synthesis of new perovskite materials, combined with advanced spectroscopic characterizations and device/cavity development. This project makes use of recent advances in perovskite optoelectronics to create a new paradigm for electrically pumped perovskite lasers and will open up new possibilities to revolutionize the current laser technology.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.834.375 |
Totale projectbegroting | € 1.834.375 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- LINKOPINGS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering metal halide PEROvskites by VAPour depositionThe PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices. | ERC Consolid... | € 1.999.843 | 2024 | Details |
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devicesSMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices. | ERC Advanced... | € 2.496.206 | 2024 | Details |
Design and Engineering of Optoelectronic MetamaterialsThis project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum. | ERC Advanced... | € 2.500.000 | 2022 | Details |
Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronicsELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices. | ERC Consolid... | € 1.991.250 | 2025 | Details |
SUpramolecularly engineered functional PERovskite quantum wellsSUPER aims to create advanced hybrid materials by integrating metal halide perovskites and organic semiconductors to enhance charge transport, luminescence, and stability for electronic applications. | ERC Starting... | € 2.474.375 | 2023 | Details |
Engineering metal halide PEROvskites by VAPour deposition
The PEROVAP project aims to advance metal halide perovskites through vapor deposition techniques, enhancing their properties for innovative solar cell applications and optoelectronic devices.
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices
SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.
Design and Engineering of Optoelectronic Metamaterials
This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.
Engineering wide band-gap LOW-DImensional systems for advanced perovskite optoelectronics
ELOW-DI aims to develop stable, low-dimensional perovskite materials for efficient indoor photovoltaics, enhancing scalability and sustainability for smart portable devices.
SUpramolecularly engineered functional PERovskite quantum wells
SUPER aims to create advanced hybrid materials by integrating metal halide perovskites and organic semiconductors to enhance charge transport, luminescence, and stability for electronic applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERSSUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices. | EIC Pathfinder | € 3.600.937 | 2024 | Details |
Novel Semiconductor Lasers for the Industrial Quantum LeapVexlum aims to revolutionize industrial quantum technologies by developing a high-power, low-noise laser through vertically integrated manufacturing, enhancing reliability and scalability for market adoption. | EIC Accelerator | € 2.425.437 | 2024 | Details |
ROOM TEMPERATURE SUPERRADIANT PEROVSKITE LASERS
SUPERLASER aims to develop green, low-cost, ultra-narrow linewidth halide perovskite lasers with zero e-waste through innovative material design and sustainable practices.
Novel Semiconductor Lasers for the Industrial Quantum Leap
Vexlum aims to revolutionize industrial quantum technologies by developing a high-power, low-noise laser through vertically integrated manufacturing, enhancing reliability and scalability for market adoption.