Targeting Mfrn2 to Inhibit Metastatic Cancers
This project aims to evaluate a solute carrier transporter as a drug target to inhibit metastatic growth in breast cancer, utilizing patient samples and mouse models for comprehensive analysis.
Projectdetails
Introduction
Metastasis formation is the leading cause of death in cancer patients. Thus, there is an unmet need for drugs that can prevent and/or treat systemic metastases.
Background
We have discovered that breast cancer cells rely on a solute carrier (SLC) transporter for metastasis formation in the lung and liver. Interestingly, systemic inhibition of this SLC transporter using a therapeutic modality has likely a favorable toxicity profile because knockout mice are viable and have very few and minor phenotypic changes.
Hypothesis
Therefore, we hypothesize that targeting the SLC transporter can be exploited to inhibit metastatic growth.
Objectives
To valorize this SLC transporter as a drug target, we will:
- Perform a detailed mechanistic analysis of its function in samples from breast cancer patients.
- Define the efficacy profile of the inhibition of this SLC transporter against systemic metastasis in mouse models.
- Translate the SLC transporter inhibition beyond breast cancer.
- Determine the efficacy and safety of targeting metastatic patient-derived xenograft (PDX) with anti-sense oligonucleotides (ASOs) against this SLC transporter.
- Delineate a strategy to define small molecule inhibitors against the SLC transporter.
Methodology
To do so, we will apply multiplex immunohistochemistry in samples from breast cancer patients and perform state-of-the-art metastasis assays in allograft, xenograft, and PDX mouse models.
Conclusion
Thus, we will deliver a comprehensive evaluation of the SLC transporter as a drug target for treating metastases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 30-11-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- VIB VZWpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Targeting the Metabolic Dependencies of Metastatic Tumor CellsThis project aims to identify and target unique amino acid dependencies in metastatic melanoma cells to develop novel therapies that prevent metastasis and improve cancer treatment outcomes. | ERC Starting... | € 1.493.750 | 2024 | Details |
Deciphering METAstasis of lung cancer to BRAIN and developing new therapeutic approaches via a human metastatic cascade platformMETA-BRAIN aims to develop a human-based in vitro model to study cancer brain metastasis, the role of the blood-brain barrier, and create targeted drug delivery systems for effective treatment. | ERC Starting... | € 1.500.000 | 2024 | Details |
Treating Liver MetastasisThis project aims to enhance immunotherapy for colorectal liver metastases by targeting innate immune responses, utilizing advanced models to identify key cellular interactions and functions. | ERC Synergy ... | € 10.180.358 | 2024 | Details |
Intercellular trading in nucleotide metabolism: an emerging targetThis project aims to identify nucleotide sources and metabolic interactions in cancer and stromal cells using single-cell multi-omics to develop targeted therapies against nucleotide-dependent tumors. | ERC Starting... | € 1.450.000 | 2022 | Details |
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapyThis project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling. | ERC Starting... | € 1.500.000 | 2023 | Details |
Targeting the Metabolic Dependencies of Metastatic Tumor Cells
This project aims to identify and target unique amino acid dependencies in metastatic melanoma cells to develop novel therapies that prevent metastasis and improve cancer treatment outcomes.
Deciphering METAstasis of lung cancer to BRAIN and developing new therapeutic approaches via a human metastatic cascade platform
META-BRAIN aims to develop a human-based in vitro model to study cancer brain metastasis, the role of the blood-brain barrier, and create targeted drug delivery systems for effective treatment.
Treating Liver Metastasis
This project aims to enhance immunotherapy for colorectal liver metastases by targeting innate immune responses, utilizing advanced models to identify key cellular interactions and functions.
Intercellular trading in nucleotide metabolism: an emerging target
This project aims to identify nucleotide sources and metabolic interactions in cancer and stromal cells using single-cell multi-omics to develop targeted therapies against nucleotide-dependent tumors.
Mechano-modulation of tumor microenvironment with mechanotherapeutics and sonopermeation to optimize nano-immunotherapy
This project aims to enhance drug delivery and treatment efficacy in desmoplastic tumors by synergistically combining mechanotherapeutics and ultrasound sonopermeation, supported by computational modeling.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D spheroids derived from single cells for discovering stochastic patterns behind metastasis3DSecret aims to revolutionize cancer treatment by analyzing single circulating tumor cells using advanced technologies to uncover stochastic patterns driving metastasis and improve diagnosis and prognosis. | EIC Pathfinder | € 2.591.050 | 2023 | Details |
3D spheroids derived from single cells for discovering stochastic patterns behind metastasis
3DSecret aims to revolutionize cancer treatment by analyzing single circulating tumor cells using advanced technologies to uncover stochastic patterns driving metastasis and improve diagnosis and prognosis.