Treating Liver Metastasis
This project aims to enhance immunotherapy for colorectal liver metastases by targeting innate immune responses, utilizing advanced models to identify key cellular interactions and functions.
Projectdetails
Introduction
Liver metastases commonly develop in up to 50% of patients with various cancer types. The most common cancer that metastasizes to the liver is colorectal cancer (CRC). At least 25% of CRC patients develop colorectal liver metastases (CRLM) during their illness.
Clinical Need
CRLM represent the major unmet clinical need for this malignancy, as the 5-year survival rate of patients with unresectable disease does not exceed 2%. New therapies that promote antitumor immunity have been recently developed, mostly focusing on enhancing T cell responses.
Challenges in Current Therapies
Although these therapies have led to unprecedented successes, only a minority of patients benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in next generation immunotherapies. Given the crucial role of innate immune responses in immunity, targeting these responses opens up new possibilities for tumor control.
Hypothesis
We hypothesize that the immunotherapy of liver metastases can be significantly improved through harnessing the biology of innate lymphoid cells (ILC), such as Natural Killer (NK) cells and ILC1s, and myeloid cells such as macrophages and dendritic cells (DCs).
Team Expertise
Our team brings together experts in the following areas:
- The biology of tissue-resident myeloid (Ginhoux, PI4) and lymphoid (Gasteiger, cPI) cells
- Liver immunology (Fumagalli, PI3)
- The development of novel immunotherapeutic strategies that modulate immune cells in the fight against cancer (Vivier, PI2)
Research Objectives
By combining cutting-edge single cell and spatial transcriptomics of human patient samples with cross-species analyses in advanced genetic mouse models, we aim to:
- Identify cellular interactions defining the metastatic tumor microenvironment across murine and human tissue specimens.
- Investigate immune cell functions regulating metastatic disease using a unique combination of advanced genetic mouse and human tissue models.
- Harness the anti-tumoral functions of innate immune cells via next generation cell engagers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 10.180.358 |
Totale projectbegroting | € 10.180.358 |
Tijdlijn
Startdatum | 1-7-2024 |
Einddatum | 30-6-2030 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURGpenvoerder
- UNIVERSITE D'AIX MARSEILLE
- UNIVERSITA VITA-SALUTE SAN RAFFAELE
- INSTITUT GUSTAVE ROUSSY
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Spatial Quantification of Cellular Metabolism in the Tumor Immune MicroenvironmentThis project aims to enhance cancer immunotherapy by quantifying immune cell metabolism in tumors to identify therapeutic targets that improve patient responses to treatment. | ERC Starting... | € 1.497.756 | 2023 | Details |
Targeting the Metabolic Dependencies of Metastatic Tumor CellsThis project aims to identify and target unique amino acid dependencies in metastatic melanoma cells to develop novel therapies that prevent metastasis and improve cancer treatment outcomes. | ERC Starting... | € 1.493.750 | 2024 | Details |
Elucidating the networks of immune stromal connections by Perturbation of Immunity in Cancer - towards developing novel therapeutic strategiesThis project aims to map immune and stromal cell interactions in the tumor microenvironment to develop targeted therapies that enhance immunotherapy efficacy against cancer. | ERC Starting... | € 1.500.000 | 2025 | Details |
Unlocking a T cell-mediated Immune response in therapy-challenged TumorsUnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors. | ERC Consolid... | € 2.000.000 | 2024 | Details |
Revealing liver micrometastases in vivo using ultra-high definition MRIMicroMetSCAN aims to revolutionize MRI techniques for early detection of liver micrometastases, enhancing cancer diagnosis and treatment through improved imaging sensitivity and biological insights. | ERC Starting... | € 1.998.456 | 2025 | Details |
Spatial Quantification of Cellular Metabolism in the Tumor Immune Microenvironment
This project aims to enhance cancer immunotherapy by quantifying immune cell metabolism in tumors to identify therapeutic targets that improve patient responses to treatment.
Targeting the Metabolic Dependencies of Metastatic Tumor Cells
This project aims to identify and target unique amino acid dependencies in metastatic melanoma cells to develop novel therapies that prevent metastasis and improve cancer treatment outcomes.
Elucidating the networks of immune stromal connections by Perturbation of Immunity in Cancer - towards developing novel therapeutic strategies
This project aims to map immune and stromal cell interactions in the tumor microenvironment to develop targeted therapies that enhance immunotherapy efficacy against cancer.
Unlocking a T cell-mediated Immune response in therapy-challenged Tumors
UnlockIT aims to develop mechanism-based combination therapies for cancer by understanding tumor-immune interactions and enhancing T cell responses in therapy-challenged tumors.
Revealing liver micrometastases in vivo using ultra-high definition MRI
MicroMetSCAN aims to revolutionize MRI techniques for early detection of liver micrometastases, enhancing cancer diagnosis and treatment through improved imaging sensitivity and biological insights.