Super-resolution microscopy for immune checkpoint inhibitors diagnostics

NANODIAGNOSTIC aims to translate super-resolution microscopy techniques into clinical tools for cancer diagnostics, enhancing patient stratification for effective immunotherapy.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

In the last decade, super-resolution microscopy techniques have emerged as powerful quantitative tools for biology. They have capabilities to visualize single molecules at the nanoscale, opening the door to study biological processes at a level not accessible before.

Project Background

In the ERC StG NANOSTORM, we showed the potential of these techniques, providing new fundamental knowledge on the mechanism and design of new targeted therapies. However, some of the methods we developed have the potential to be translated into applied clinical diagnostic tools.

Project Goals

In NANODIAGNOSTIC, we would offer a proof-of-concept of the application of super-resolution microscopy and single-molecule imaging for cancer diagnostics, with a focus on patient stratification for immunotherapy.

Immunotherapy Context

Novel advances in immunotherapies have brought the development of immune checkpoint inhibitors (ICI) that re-activate the immune system against the tumor. Despite the high success of these therapies, there is one main challenge:

  1. They are only effective on a limited portion of patients.
  2. Current diagnostic approaches are not capable of stratifying patients successfully.

Expected Outcomes

NANODIAGNOSTIC will translate advanced optical methods from an academic setting to the clinic and holds great potential to provide new diagnostic methods to improve the outcome of immunotherapy.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-12-2022
Einddatum31-5-2024
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITEIT EINDHOVENpenvoerder

Land(en)

Netherlands

Vergelijkbare projecten binnen European Research Council

ERC Consolid...

Nano-assisted digitalizing of cancer phenotyping for immunotherapy

The ImmunoChip project aims to develop a microfluidic device that analyzes cancer-immunity interactions to predict patient responses to immunotherapy, enhancing treatment efficacy and outcomes.

€ 1.993.875
ERC Proof of...

Nanobodies blocking immunosuppressive unexplored proteins from the tumor endothelium to promote anti-tumor immune response

This project aims to develop novel nanobody therapeutics targeting unexplored immunosuppressive genes in endothelial cells to enhance anti-tumor immunity in non-small cell lung cancer.

€ 150.000
ERC Advanced...

Allosteric modulation of immune checkpoint complexes as a new mode of therapeutic intervention in immunotherapy

The project aims to develop novel Nanobodies as safe and effective modulators of immune checkpoint complexes for cancer and autoimmune diseases, potentially outperforming current therapies.

€ 2.499.674
ERC Proof of...

Precision Diagnostics for Predicting Therapy Response to Bispecific Antibodies

This project aims to develop a precision diagnostic tool that predicts responses to bispecific antibody therapies by mapping single-cell immune interactions in children with acute lymphoblastic leukemia.

€ 150.000
ERC Proof of...

Development of a nanobody-based, slide-free approach for 3D-Histological analysis of the spatial tumor microenvironment using lightsheet imaging

This project aims to revolutionize cancer histology through a nanobody-based 3D-histopathology approach, enabling rapid, spatially accurate analysis of tumor microenvironments for improved diagnosis and patient stratification.

€ 150.000

Vergelijkbare projecten uit andere regelingen

EIC Accelerator

IOO: a novel assay to predict patient response to immune checkpoint inhibitors, optimising patient stratification to these therapies and tripling solid tumour patient outcomes in immuno-oncology.

The project aims to enhance cancer immunotherapy efficacy by developing a validated biomarker assay to predict patient responses, potentially doubling survival rates for lethal tumors.

€ 2.496.112
EIC Pathfinder

Functional chemical reprogramming of cancer cells to induce antitumor immunity

The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.

€ 2.966.695
EIC Transition

RESTORING IMMUNITY CONTROL OF GI CANCERS

TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.

€ 2.007.750
EIC Transition

Development and validation of a pan-cancer neutrophil biomarker test for predicting clinical benefit from immunotherapy based on flow cytometry analysis of blood samples

The NeutroFlow project aims to develop a non-invasive blood test using a flow cytometry assay to predict cancer immunotherapy benefits, enhancing patient outcomes and reducing costs.

€ 2.499.999
EIC Pathfinder

On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology

DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.

€ 3.018.312