Real-time, High-throughput, Coherent X-ray Microscopy: from Large-Scale Installations to Tabletop Device
HYPER aims to develop a cost-effective tabletop coherent XUV microscope for advanced nanoscale imaging, enhancing accessibility and understanding in optoelectronics and biomedical applications.
Projectdetails
Introduction
Recent advances in Coherent X-ray Microscopy opened new exciting avenues for 2D/3D imaging, allowing us to visualize deformations in batteries and solar cells during charge migration, magnetic topologies, catalysts pollution, transistors fabrication defects, and neuron activity. These emerging applications are expected to offer significant growth opportunities to market players in the coming years, complementing the possibilities offered by optical and electron-based microscopy methods.
Current Limitations
However, the expansion of this technology is currently hindered by its availability at facility-scale installations, where implementations are expensive and limit accessibility to a highly-specialized community.
Project Overview
In ULTRAIMAGE (851154), we tackled the challenge by scaling this technology to a tabletop device, while retaining flexibility and complementary facility-scale performances. Specifically, we prototyped a coherent XUV microscope which offers the following advantages:
- Femtosecond time- and Ångstrom-to-nanometer spatial resolution.
- Exquisite material composition and height contrast, through amplitude and phase.
- Self-diagnostic capabilities of aberrations and misalignments.
- Quantitative, multimodal, non-destructive imaging.
Future Directions
HYPER aims towards the next step of R&I, increasing robustness, throughput, speed, and availability to the public, while retaining cost-effectiveness. Key to this advancement is:
- Implementation of beamline-style, real-time diagnostics of intensity, spectrum, and wavefront of the illumination.
- Use of code parallelization, deep-learning, and fast XUV detection technology.
Accessibility and Impact
Accessibility to a broad range of stakeholders and end users, and the translation to market of the consolidated technology, will be deployed through a strategic network of academe and industry partners. HYPER will foster broad, unprecedented understanding of functionality at the nanoscale, vital to the design of next generation optoelectronics and biomedical devices.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PAVIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Optical Microscope for Imaging High-Speed Precision Surface ProcessesSURFLIGHT aims to revolutionize optical microscopy with a high-resolution, real-time microscope for monitoring ultrafast surface processes, enhancing catalysis R&D and reducing costs across various industries. | ERC Proof of... | € 150.000 | 2024 | Details |
Breaking resolution limits in ultrafast X-ray diffractive imagingThis project aims to enhance spatial resolution in femtosecond X-ray imaging of nanoscale processes by utilizing intense short FEL pulses and advanced reconstruction algorithms for improved photochemistry insights. | ERC Starting... | € 1.500.000 | 2022 | Details |
Advanced X-ray Energy-sensitive Microscopy for Virtual HistologyThis project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions. | ERC Consolid... | € 2.000.000 | 2023 | Details |
Super-resolution microscopy for semiconductor metrologyThe MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling. | ERC Proof of... | € 150.000 | 2024 | Details |
Holographic nanoscale imaging via femtosecond structured illuminationHOLOFAST aims to enhance understanding of organic photovoltaic materials by combining ultrafast holographic microscopy with nonlinear structured illumination for improved spatial and temporal resolution. | ERC Starting... | € 1.499.838 | 2024 | Details |
Optical Microscope for Imaging High-Speed Precision Surface Processes
SURFLIGHT aims to revolutionize optical microscopy with a high-resolution, real-time microscope for monitoring ultrafast surface processes, enhancing catalysis R&D and reducing costs across various industries.
Breaking resolution limits in ultrafast X-ray diffractive imaging
This project aims to enhance spatial resolution in femtosecond X-ray imaging of nanoscale processes by utilizing intense short FEL pulses and advanced reconstruction algorithms for improved photochemistry insights.
Advanced X-ray Energy-sensitive Microscopy for Virtual Histology
This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.
Super-resolution microscopy for semiconductor metrology
The MICROSEM project aims to develop a super-resolution microscopy technique using high-harmonic generation for sub-100 nm imaging in semiconductors, enhancing metrology without labeling.
Holographic nanoscale imaging via femtosecond structured illumination
HOLOFAST aims to enhance understanding of organic photovoltaic materials by combining ultrafast holographic microscopy with nonlinear structured illumination for improved spatial and temporal resolution.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
New impetus to materials research - democratizing a frontier research toolLynXes aims to democratize access to high-energy-resolution X-ray spectroscopy, revolutionizing materials analysis and boosting R&D in sustainable technologies across various industries. | EIC Accelerator | € 1.531.950 | 2024 | Details |
MHz rate mulTiple prOjection X-ray MicrOSCOPYThis project aims to revolutionize 4D X-ray microscopy by enabling MHz-rate imaging of fast processes in opaque materials, unlocking new insights for various industries. | EIC Pathfinder | € 3.154.350 | 2022 | Details |
High-throughput hyperspectral imaging across the VIS-SWIR spectrum in a single deviceThe HYPERIA project aims to develop a novel hyperspectral imaging camera using Fourier Transform interferometry for enhanced sensitivity and wavelength range, targeting applications in food safety and waste separation. | EIC Transition | € 1.500.000 | 2022 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technologyDISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI. | EIC Pathfinder | € 3.018.312 | 2022 | Details |
New impetus to materials research - democratizing a frontier research tool
LynXes aims to democratize access to high-energy-resolution X-ray spectroscopy, revolutionizing materials analysis and boosting R&D in sustainable technologies across various industries.
MHz rate mulTiple prOjection X-ray MicrOSCOPY
This project aims to revolutionize 4D X-ray microscopy by enabling MHz-rate imaging of fast processes in opaque materials, unlocking new insights for various industries.
High-throughput hyperspectral imaging across the VIS-SWIR spectrum in a single device
The HYPERIA project aims to develop a novel hyperspectral imaging camera using Fourier Transform interferometry for enhanced sensitivity and wavelength range, targeting applications in food safety and waste separation.
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
On-chip tomographic microscopy: a paraDIgm Shift for RevolUtionizing lab-on-a-chiP bioimaging technology
DISRUPT aims to revolutionize biomedical imaging with a novel lab-on-chip technology for cost-effective, high-resolution cancer detection and diagnostics using integrated tomographic microscopy and AI.