Prediction + Optimisation for scheduling and rostering with CMPpy
Develop a unified framework, CPMpy, to integrate machine learning with combinatorial optimization for efficient scheduling and rostering, enhancing its readiness for industrial application.
Projectdetails
Introduction
In today’s world, organizations across various industries face the challenge of efficiently scheduling their production processes and rostering their workforce optimally. However, despite consistent improvements in combinatorial optimization software for scheduling and rostering, the complexity of this task continues to grow due to uncertainty about multiple factors such as:
- Employee availability
- Demand fluctuations
- Supplier variability
- Variable prices
- The impact of weather
- The increasing need for energy efficiency
Machine learning can be used to make estimates about these uncertain factors, but the real challenge is in integrating predictions and the optimization of scheduling and rostering problems. More precisely, predictions and optimization over these predictions need to be developed and evaluated together.
Challenges in Current Solutions
While many combinatorial optimisation solvers for solving scheduling and rostering exist, including Constraint Programming and Mixed Integer Programming solvers, few of these solvers can be easily integrated with machine learning libraries.
Furthermore, in a machine learning pipeline, the requirements for the solver change. What is needed is a framework for solving prediction and optimization problems that bridges the machine learning and combinatorial optimization solving tools.
Proposed Framework
This framework should allow actors to discover what a data-driven approach can signify for their scheduling and rostering problem by allowing them to easily experiment and prototype, both on the learning side, the solving side, and the combination of the two.
Project Overview
In my ERC Consolidator project 'Conversational Human-Aware Technology for Optimisation', we started building such a library: CPMpy. We notice an increasing industrial interest in solving Prediction + Optimisation problems, but a lack of unified tools to do so.
This proposal sets out to increase the Technological Readiness Level of CPMpy from TRL 4 to 6 and to demonstrate its potential and align it with industry needs.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 31-8-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Computational model predictive and adaptive control toolsThis project aims to develop a theoretical and algorithmic framework for next-generation nonlinear adaptive embedded MPC systems, enhancing data collection, calibration, and runtime adaptation for industrial applications. | ERC Advanced... | € 2.499.375 | 2024 | Details |
Optimal Control of Solar Energy PlantsThis project aims to implement coalitional Model Predictive Control on a 50MW solar trough plant to enhance energy collection and reduce maintenance costs through innovative control strategies. | ERC Proof of... | € 150.000 | 2023 | Details |
Systematic and computer-aided performance certification for numerical optimizationThe project aims to enhance theoretical foundations of numerical optimization to bridge the gap between theory and practice, developing robust algorithms and certification tools for complex applications. | ERC Starting... | € 1.497.650 | 2024 | Details |
Challenges in Competitive Online OptimisationThis project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning. | ERC Starting... | € 1.499.828 | 2025 | Details |
Implementation of new machine learning algorithms for the optimisation of drug formulationsMACHINE-DRUG aims to leverage machine learning to accelerate the prediction of crystalline forms in pharmaceuticals, enhancing drug efficacy and stability while exploring broader industrial applications. | ERC Proof of... | € 150.000 | 2023 | Details |
Computational model predictive and adaptive control tools
This project aims to develop a theoretical and algorithmic framework for next-generation nonlinear adaptive embedded MPC systems, enhancing data collection, calibration, and runtime adaptation for industrial applications.
Optimal Control of Solar Energy Plants
This project aims to implement coalitional Model Predictive Control on a 50MW solar trough plant to enhance energy collection and reduce maintenance costs through innovative control strategies.
Systematic and computer-aided performance certification for numerical optimization
The project aims to enhance theoretical foundations of numerical optimization to bridge the gap between theory and practice, developing robust algorithms and certification tools for complex applications.
Challenges in Competitive Online Optimisation
This project aims to enhance decision-making under uncertainty by developing new online and learning-augmented algorithms, leveraging recent advancements in algorithm design and machine learning.
Implementation of new machine learning algorithms for the optimisation of drug formulations
MACHINE-DRUG aims to leverage machine learning to accelerate the prediction of crystalline forms in pharmaceuticals, enhancing drug efficacy and stability while exploring broader industrial applications.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Automatisering van energieoptimalisatieDit project onderzoekt de automatisering van parameter estimation voor Model Predictive Control om energiebesparing en duurzaamheid te versnellen. | Mkb-innovati... | € 20.000 | 2024 | Details |
Owner & Occupant KPI's oriented Model Predictive OpenBuildingControlHet project ontwikkelt modulaire voorspellende regeltechnieken voor gebouwbeheersystemen om energiebesparing en comfort te verbeteren, met als doel een duurzame en flexibele energie-integratie. | Missiegedrev... | € 3.512.530 | 2025 | Details |
Supply Chain monitoring met Machine LearningDit project onderzoekt de haalbaarheid van een innovatieve Machine Learning techniek voor continue monitoring in de supply chain. | Mkb-innovati... | € 20.000 | 2022 | Details |
SCCOTS: Standard Cboost Components of the ShelfCboost onderzoekt de haalbaarheid van 'plug-and-play' AI-modules om digitalisering voor MKB toegankelijker te maken. | Mkb-innovati... | € 20.000 | 2022 | Details |
Automatisering van energieoptimalisatie
Dit project onderzoekt de automatisering van parameter estimation voor Model Predictive Control om energiebesparing en duurzaamheid te versnellen.
Owner & Occupant KPI's oriented Model Predictive OpenBuildingControl
Het project ontwikkelt modulaire voorspellende regeltechnieken voor gebouwbeheersystemen om energiebesparing en comfort te verbeteren, met als doel een duurzame en flexibele energie-integratie.
Supply Chain monitoring met Machine Learning
Dit project onderzoekt de haalbaarheid van een innovatieve Machine Learning techniek voor continue monitoring in de supply chain.
SCCOTS: Standard Cboost Components of the Shelf
Cboost onderzoekt de haalbaarheid van 'plug-and-play' AI-modules om digitalisering voor MKB toegankelijker te maken.